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Chapter 1

Basic Notions in Quantum

Information

1.1 Scope of the course and Bibliography

This course is primarily designed for students enrolled at the University of Tübingen in various

programs such as the M.Sc. in Mathematical Physics and the M.Sc. in Advanced Quantum

Physics, although students from other degrees like the B.Sc. in Physics, B.Sc. in Mathematics,

and related topics, are welcome to attend it as well. In general, it is also accessible to individuals

with foundational knowledge in mathematical analysis, linear algebra, probability theory, and an

eagerness to explore the captivating realm of quantum information theory.

1.1.1 Bibliography

A wealth of literature exists on the topics we will explore in this course, including Quantum

Information Theory, Quantum Computing, Fault Tolerance, Error Correction, and more. To assist

students in their studies, we have compiled a concise list of the primary texts frequently utilized

in similar courses within the community. Additionally, we offer our Lecture Notes as a valuable

reference tool that summarizes course content and provides supplementary material and references

in certain areas. It is important to note that our Lecture Notes are not meant to substitute any of

the other texts authored by leading quantum information experts. We strongly encourage students

to consult these works to augment their understanding of the subject.

The short selection of manuscripts has been done accordingly to the contents intended for this

course. The lectures, and therefore these notes, have been prepared consulting these texts, as well

as some others, and they are properly referenced in this respect. The main references in which our

notes are based are the following:

1. Lectures Notes

2. Nielsen-Chuang, “Quantum Computation and Quantum Information” [2]

3. de Wolf, “Quantum Computing: Lecture Notes”, [8]

4. Preskill, “Quantum Computation. Lecture Notes”, [4]

Some other books/notes used for the construction of these notes will be properly referenced in

the main text.
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1.2 What is Quantum Information?

The scientific field of Quantum Information has a lot of different facets and encompasses the

fields of Mathematics, Physics and Computer Science. Its main questions concern the control of

quantum systems. I.e. can we construct and manipulate complex quantum systems? And if so,

what are the scientific and technological applications? It is important to remark that the field

of Quantum Information Science does not study the frontier of short (subnuclear) distances or

long (cosmological) distances, but rather the frontier of highly complex quantum systems, what is

usually known as the entanglement frontier.

Compared to the classical world that we know, as it is the world we experience every day,

the quantum world exhibits behaviours that are counter-intuitive to our classical understanding of

the world. These additional properties, which will be discussed in detail throughout the course,

provide quantum systems with, in a sense, more complex and richer behaviour, meaning that we

can expect to simulate a classical system using a quantum system, and it is generally believed

that this is not possible the other way around (although it still remains an unproven conjecture in

full generality). However, quantum systems present the phenomenon of decoherence, as opposed

to classical systems, and this effect tends to destroy information very fast and, thus, quantum

systems end up losing their special properties after some time and behaving like classical ones. It

is a major problem to determine how hard solving the problem arising from decoherence is and

whether we will be able to overcome it with the current techniques of science. Nevertheless, the

special properties of quantum systems torched a large research effort whose main goal is to control

the quantum behaviour of scalable quantum systems and achieve the “quantum advantage”, which

will allow us to prepare and control complex quantum systems that behave in ways that cannot be

predicted using digital computers. For that, we will need to find what quantum tasks are feasible

and which quantum problems are hard to simulate classically.

1.2.1 Example: Shor’s factoring algorithm

To give an example of the theoretically expected improvement in behaviour of a quantum computer

with respect to a classical one, let us present some basic calculations on the required time to fac-

torize a certain number with both devices. For that, we make use of one of the first breakthroughs

in the first steps of the field of Quantum Computing in the past century, namely the algorithm

devised by Shor to factor numbers in their prime components. We will discuss such an algorithm

in detail in a future chapter of the current notes (see [5] as well as the references [8, 6]).

Assume that we want to factor a number into its two prime factors n = p1 ·p2. Some theoretical

computations show that we have the following comparison of computational time using Shor’s

algorithm on a quantum computer and a classical algorithm on a classical computer:

Numbers Classical computer Quantum computer

193 digits 30 CPU years 0.1 seconds

500 digits 1012 CPU years 2 seconds

Moreover, as a hint of the meaning of the previous table in an impactful case, the energy consump-

tion to crack RSA-encryption would demand 106 terawatt hours for the classical and 10 megawatt

hours for a quantum computer.1

1This estimate stems from about 10 years ago.
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1.2.2 Emergence of Quantum Information Science

There were several coetaneous facts that could be considered as the seed for the creation of the

new field of Quantum Information Science. Some of the most remarkable facts which gave rise to

this field are:

• A genuine concern regarding the true value of Moore’s law in the coming years. This concern

was based on the physical limit of computer chips, i.e. the space per bit cannot be shrunk

indefinitely but is limited by the physical properties of the chip material (diameter of atoms,

etc.).

• At a similar time, it was the first moment in history in which researchers in labs managed to

control ”single quantum systems”, isolating them from systems with many quantum systems.

• Moreover, there was also an increase in the recognition of the computational power generated

by quantum mechanics, which might allow for the design of computational devices based on

the laws of such a field.

• Finally, another motivating aspect was the relevance of certain implications of quantum

mechanics in practical aspects for society, such as to the security of public key cryptography.

1.2.3 Quantum Information vs. Classical Information

To conclude this short introduction to Quantum Information Theory, let us briefly mention the

main differences with respect to the realm of Classical Information Theory. The three key properties

of a quantum system compared to a classical system are the following ones:

• (True) randomness. Note that, even though we sometimes discuss some processes in

classical mechanics as random ones, they are frequently just ”pseudo-random”, in the sense

that their outcome might be predetermined, even if we do not know it in advance (and

that is why we take it to be random). However, clicks in a Geiger counter, for instance,

are intrinsically random, not pseudo-random, as, at every instant of time, there is always

a certain probability of having more clicks in the next second or not having them, but the

outcome is not predetermined in any way.

• Uncertainty. If we consider two operators A and B which do not commute, this means that

measuring A influences the outcome of a subsequent measurement of B and vice versa.

• Entanglement. This property can be summarized as “the whole is more definite than the

parts”. This means that even knowing a joint system AB (pure), the (mixed) state of A may

be highly uncertain.

All these terms will be further defined and formalized as we proceed with the course.

1.2.4 Notation

In the next sections, we are going to provide a brief introduction to quantum mechanics and

its formalism, from a mathematical perspective. The concepts that we will introduce below are

essential for the postulates that we will present subsequently.

Beforehand, we need to introduce some notation. From now on, we will be working with n-

dimensional (complex) Hilbert spaces H, which can be identified with Cn. If the dimension is

irrelevant or clear from the context we will just write H.
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Notation. We further introduce the following (bra-ket) notation originally used by Paul Dirac

(1904 - 1984). He set

|ψ⟩ ∈ Cn to be a vector,

⟨ψ| ∈ (Cn)∗ to be a dual vector.
(1.2.1)

This notation originated from the notation for the inner product on H:

⟨ψ|ψ⟩ ∈ R . (1.2.2)

In this notation one can write the rank one operators onto the space spanned by |ψ⟩ as a ket-bra

|ψ⟩⟨ψ| : Cn → Cn (1.2.3)

allowing for the convenient use of these objects, for every |ξ⟩ ∈ Cn,

|ψ⟩⟨ψ|ξ⟩ = ⟨ψ|ξ⟩ |ψ⟩ ∈ Cn . (1.2.4)

The content of the following subsections has been inspired by some basic texts of quantum

information theory, such as the courses [3], [8] and [6], as well as the books [7], although one of

the most fundamental texts in this field is [2]. We refer the reader to any of those texts for further

knowledge on the topic.

1.3 Qubits and basic operations

Arguably, the most essential concept for quantum information theory is the one of a qubit. A

qubit is the simplest quantum mechanical system and plays the same role in quantum information

theory as the bit in classical information theory, which can be 0 or 1. Hence, it is the basic unit

of information and extends the concept of a classical bit, which is just 0 or 1 to a superposition

of those two. Formally, it is the system described by a two-dimensional Hilbert space. We will

denote the canonical basis of this vector space C2 as {|0⟩ , |1⟩}, i.e.

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(1.3.1)

This basis is usually called the computational basis. Then, while a classical bit can be in the state

0 or in the state 1, an arbitrary state for a qubit is a vector

|ψ⟩ = a0 |0⟩+ a1 |1⟩ ∈ C2 (1.3.2)

with a0, a1 ∈ C and |a0|2 + |a1|2 = 1. If a0 ̸= 0, a1 ̸= 0, we say that the state is in superposition of

the situations |0⟩ and |1⟩. Notice that this fact leads to the essential difference between the possible

states of a bit, which are just two, 0 or 1, and the possible states of a qubit, which, in principle, are

infinite. This new situation allows us to perform new protocols for quantum information processing.

Indeed, this principle constitutes the basis of the theoretical quantum computer, for which we can

briefly mention the main idea behind it in a nutshell:

• If we consider one bit, we can perform 1 operation at a time, whereas we can perform 2

operations simultaneously with one qubit. This is due to the superposition phenomenon

mentioned above, since now an arbitrary state is of the form

|ψ⟩ = a0 |0⟩+ a1 |1⟩ ∈ C2 ,

where one can see two basic bits (thus, operations) being performed at the same time.
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• If we now have two bits, we can perform 2 operations at a time, while, if we consider two

qubits, 4 operations can be performed at the same time (we will see that when we consider

a superposition of the four elements of the Bell basis).

• In general, with n qubits, one can perform n operations simultaneously (one per each bit),

whereas with n qubits one can perform 2n operations at the same time.

Hence, theoretically, a quantum computer should be able give an exponential improvement to the

amount of operations performed in parallel compared to a classical computer (i.e. an exponential

speed-up).

Let us go back now to the definition and basic properties of qubits. It is important to remark

that, even though a given qubit can be in any superposition state a0 |0⟩+ a1 |1⟩, if we measure the

state of such a qubit, we will obtain either the value |0⟩ or |1⟩ for the state of the qubit (these

states can be seen as classical ones), with certain probabilities. Hence, we cannot “observe” the

superposition phenomenon, although we are able to use it, as we will see below.

In the following, another basis will be also rather important and we want to introduce it here.

It is given as

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩) (1.3.3)

To extract classical information from a quantum system one performs a measurement. Performing

such a measurement on such an arbitrary state the systems turns out to be in the state |0⟩ with

probability |a0|2 and in the state |1⟩ with |a1|2.
A single qubit lives in C2. However, one can consider systems of more qubit to have richer

spaces. For example, if we consider 2 qubits, the 2-qubit system that we get has four elements in

a possible basis:

{|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩},

where, in each case, the qubit in the left part denotes the first qubit (and associated to the first

system), and the right one denotes the second qubit. If one considers |0⟩ ⊗ |1⟩, for instance, this

element can be also expressed by |0⟩ |1⟩ or |01⟩, and the structure of tensor product implies that

in C4 can be written as: 
0

1

0

0

.

More generally, as mentioned previously, if one considers a system of n qubits, a basis of such

system has 2n elements (it is equivalent to saying that, with n qubits, one can perform 2n operations

simultaneously). In particular, one can always consider for such elements of the basis the elements

|a1⟩ ⊗ |a2⟩ ⊗ . . . ⊗ |an⟩, with ai ∈ {0, 1} for all i = 1, . . . , n. Since there are 2n elements in this

basis, we can change this previous notation to |0⟩ , |1⟩ , . . . |2n−1⟩, to simplify it.

Therefore, a quantum state on n qubits, because of superposition, is given by

α0 |0⟩+ α1 |1⟩+ . . .+ α2n−1 |2n − 1⟩ ,
2n−1∑
i=0

|αi|2 = 1.

Moreover, as in the case of a single qubit, if one measures this in the computational basis, one

just gets a “classical” n-bit state, |i⟩, with probability |αi|2.
In a more general setting, consider a physical system that can be in N different, mutually

exclusive classical states (in the case of the qubit, N = 2, and for n qubits, N = 2n). A mixed

quantum state |φ⟩ is a superposition of pure quantum state in the following form:
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|φ⟩ = α1 |1⟩+ α2 |2⟩+ . . .+ αN |N⟩.

The elements αi in the previous expression are complex numbers that are called amplitudes,

and, in this expression, it is easy to read the superposition phenomenon as the possibility of a

quantum system to be in N classical states states at the same time (or perform N operations

simultaneously, as mentioned above).

1.3.1 Measurement

In general, given a quantum state, we can consider two different scenarios: Either we measure it,

or we let it evolve under a unitary without measuring it. In this subsection, we explain the first

case.

Let us recall some basic notions about Hilbert spaces and their scalar products. Let H be a

Hilbert space (in general, we will just consider finite-dimensional spaces) and let T : H → H be

a linear operator on it. Since H is a Hilbert space, in particular it is a normed space with an

associated norm ∥·∥H induced by a scalar product ⟨· | ·⟩.
We say that T is a bounded operator if

∥T∥H→H := sup
x∈H

∥T (x)∥H
∥x∥H

<∞,

and denote by B(H) the space of bounded linear operators on H. Moreover, if T : H → H, we can

define its dual operator, and denote it by T ∗, as the operator that satisfies

⟨y | T (x)⟩ = ⟨T ∗(y) | x⟩ for every x, y ∈ H.

Now we are in position to formally define a measurement in the following form:

Definition. 1.3.1 (Measurement)

Let {Mn}n ⊂ B(H) be a collection of operators verifying∑
n

M∗
nMn = 1 (1.3.4)

where 1 denotes the identity operator (we drop the subindex with the dimension when there is no

possible confusion) and M∗
n denotes the dual of the operator Mn. This collection of operators is

called quantum measurements when the following holds: Given a state of a quantum system

|φ⟩ before performing this operation to measure it, the probability that result |n⟩ occurs is given
by

p(n) = ⟨φ |M∗
nMnφ⟩ (1.3.5)

and the state of the system after this operation is given by

Mn |φ⟩√
p(n)

.

Consider again the state

|φ⟩ = α1 |1⟩+ α2 |2⟩+ . . .+ αN |N⟩.

and assume that we measure it. As we have already mentioned, we will obtain the classical state

|i⟩, with probability |αi|2, thus we cannot “see” the superposition itself. Among some other things,

this means that the probability to get specifically the state |i⟩ when we measure, and not another

one, is |αi|2. Hence, since the quantum state induces a probability distribution on the classical

states, this implies
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N∑
i=1

|αi|2 = 1.

Notice that when we measure |φ⟩ and get a classical state, |φ⟩ disappears, and all that is left

is the classical state itself. We say then that |φ⟩ has collapsed to the classical state that we got,

and the information encoded in the amplitudes αi is now gone.

In general, we will measure in the computational basis. However, there are several ways to

perform these measurements, that we will present throughout this section. Let us begin with the

easiest one, the measurement of a qubit in its computational basis. It is defined by the measurement

operators:

M0 = |0⟩⟨0| and M1 = |1⟩⟨1|.

Notice that both operators are selfadjoint, i.e., they coincide with their dual operators (actually,

they are projections), and they verify M∗
i Mi =M2

i =Mi, for i = 1, 2, where M∗
i denotes the dual

of the operator Mi, and M0 +M1 = 1. Also, when we measure

|φ⟩ = α0 |0⟩+ α1 |1⟩,

the probability to obtain the outcome |i⟩ is |αi|2, and the state after measurement in that case is
αi

|αi| |i⟩. Actually, we can see that this state is equivalent to |i⟩ (since it is just a rotation of the

latter).

Indeed, consider |φ⟩ and eiθ |φ⟩ (which is a more general expression for the element mentioned

above) and assume that we measure both states with a measurement {Mn}n. Then, the probability
of getting outcome n for the second element is〈

φe−iθ|M∗
nMn|eiθφ

〉
= ⟨φ|M∗

nMn|φ⟩,

the same that for the first element. Hence, both states are operationally identical.

1.3.2 Projective Measurements

In this subsubsection, we are going to introduce projective measurements, which play an special

role in Postulate III of quantum mechanics (as we will see in the following section). They can be

defined in the following form.

Definition. 1.3.2 (Projective measurement)

Consider a collection {Mn}n ⊂ B(H) of measurements, as described in Definition 1.3.1. Assume

that they have the additional property that the Mn are orthogonal projections, i.e., they are

self-adjoint and verify

MnMm = δmnMn,

where δmn = 1 iff m = n and 0 otherwise. These measurements are called projective measure-

ments.

It is clear that each one of these operators Mn projects on a subspace Hn ⊂ H of the global

Hilbert space. Hence, an observable M can be defined as the Hermitian operator

M =
∑
n

λnMn,

where the term in the right hand-side is, in fact, the spectral decomposition of M . Moreover, the

possible outcomes of the measurement correspond to the eigenvalues λn of the observable, and

when we measure the state |φ⟩, the probability of getting state |n⟩ is:
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p(n) = ⟨φ|Mn|φ⟩.

With this notation, the average value of the measurement, with respect to the state |φ⟩, is∑
n

np(n) =
∑
n

n ⟨φ|Mn|φ⟩ = ⟨φ|M |φ⟩.

1.3.3 POVM Measurements

In many situations, we will not be as interested in the post measurement state of our particle itself

as in the probabilities of the different possible measurement outcomes. In this case, we can reduce

to the formalism of the so called Positive Operator Valued Measurements (POVM’s).

Let us recall that an operator T ∈ B(H) is said to be positive (shortened form of positive

semidefinite) if

⟨x, T (x)⟩ ≥ 0 ∀x ∈ H.

As we will see below, the operators mentioned in the definition of POVM are clearly positive, since

⟨x,En(x)⟩ = ⟨Mn(x),Mn(x)⟩ = ∥Mn(x)∥ ≥ 0 ∀x ∈ H.

Definition. 1.3.3 (Positive operator valued measure)

Consider a measurement {Mn}n ∈ B(H) as in the Definition 1.3.1. Then, we can define the positive

operators

En =M∗
nMn.

This family of operators {En}n is called a POVM.

The operators presented in the definition of POVM clearly satisfy∑
n

En = 1

and their probability of obtaining outcome m is

p(m) = ⟨φ|Em|φ⟩.

Conversely, if we have a collection of positive operators {En}n verifying
∑

nEn = 1, we can define

a measurement {Mn}n from them just by considering Mn =
√
En.

1.3.4 Unitary Evolution

As opposed to the previous subsection, now we let our quantum state evolve without measuring

it. Assume we have a system of the form

|φ⟩ = α1 |1⟩+ . . .+ αN |N⟩ (1.3.6)

and want to transform this to the system

|ψ⟩ = β1 |1⟩+ . . .+ βN |N⟩ . (1.3.7)

Quantum mechanics only allows linear operations to be applied to quantum states. This means

that, after a change of notation (identifying |φ⟩ with an n-dimensional vector), applying an oper-

ation that changes |φ⟩ to |ψ⟩ corresponds just to a multiplication by an N × N complex-valued

matrix. With the previous expressions for |φ⟩ and |ψ⟩, one has

U


α1

...

αN

 =


β1
...

βN

 (1.3.8)
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and adding the condition that
N∑
i=1

|βi|2 = 1, (1.3.9)

we immediately get that U has to be a unitary. This means

UU∗ = U∗U = 1 (1.3.10)

Since it is unitary, then, in particular, U−1 = U∗, and this inverse always exists, what can be

translated in the quantum setting to the fact that every non-measuring operation on a quantum

state must be reversible (in contrast with measurements, which were clearly non-reversible).

We present now a prominent example of unitaries, the Pauli matrices.

Example.

σ0 = 1 =

(
1 0

0 1

)
σx = X =

(
0 1

1 0

)

σy = Y =

(
0 −i
i 0

)
σz = Z =

(
1 0

0 −1

) (1.3.11)

From a quantum computational point of view we can think of unitary matrices as quantum

logical gates. We will deepen in this connection in the first section of the following chapter.

1.3.5 Density operators

In this subsection, we introduce the density operators formalism that will be necessary to present

the Postulates of the Quantum Mechanics in the Schrödinger picture. Before moving to the defi-

nition of density operators, let us start by recalling some basic concepts. We start by recalling the

notion of trace of an operator.

Definition. 1.3.4 (Trace)

Let T : H → H a linear map represented by a matrix M in a certain basis. We then define

Tr[T ] = Tr[M ] =
∑
i

Mii ∈ C (1.3.12)

as the sum of the diagonal elements of the matrix M . The trace of T is well defined as it is cyclic

and linear. This means it it is invariant under basis change.

It is easy to see that the trace is linear and cyclic, i.e., for A and B matrices,

Tr(AB) = Tr(BA).

From this last property, one also gets unitary invariance: For every unitary operator U ,

Tr(UAU∗) = Tr(U∗UA) = Tr(A).

Finally, another useful and interesting property concerning the trace is the following. Let |φ⟩ ∈ H
be a state (or unit vector), and consider the rank-one operator |φ⟩ ⟨φ| : H → H, which projects

in the direction of |φ⟩. Consider now an arbitrary operator T ∈ B(H) and suppose that we want

to compute Tr(A |φ⟩ ⟨φ|). To do that, before we express |φ⟩ in a basis {|i⟩} of H where the first

element is exactly |φ⟩, i.e., |φ⟩ = |1⟩. Then, we get:

Tr(A |φ⟩ ⟨φ|) =
∑
i

⟨i|A|φ⟩ ⟨φ|i⟩ = ⟨φ|A|φ⟩
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Now, let us move to the formalism of density operators. In the previous subsections, we have

described the state of a physical system identifying it with a unit vector in the Hilbert space H.

However, there is an equivalent description with trace-class operators on the Hilbert space. One

of the main advantages of this description with respect to certain problems appears, for example,

when dealing with real experimental systems where noise is present.

A motivation for this formalism comes from the following situation: Sometimes, we do not

know whether our system is in a specific state |φ⟩, but rather that it is in each one of the states

|φi⟩ with probability pi, respectively. Hence, we would like to be able to consider the element∑
i

pi |φi⟩,

with the constants pi verifying ∑
i

pi = 1,

and work with it as a state. However, it is not a state anymore, since it is not a unit vector. To

avoid this difficulty, one can associate each state |φi⟩ to the rank-one projector |φi⟩⟨φi|. Hence,

the state in the previous scenario can be described, instead, in the following form

ρ =
∑
i

pi|φi⟩⟨φi|,

where ρ is a Hermitian, positive semidefinite, and trace one operator. Indeed, it is clear from its

description that ρ is Hermitian and has trace one (because of the linearity of the trace and the

fact that Tr(|φi⟩ ⟨φi|) = 1). To see that it is positive semidefinite, notice that for any |ϕ⟩ ∈ H,

⟨ϕ|ρ|ϕ⟩ =
∑
i

pi ⟨ϕ|φi⟩ ⟨φi|ϕ⟩ =
∑
i

pi |⟨ϕ|φi⟩|2 ≥ 0.

These operators are called density operators or density matrices and the set of such elements is

usually denoted by S(H).

Definition. 1.3.5 (Quantum state/Density operators)

A quantum state or density operator is an linear continues operator ρ ∈ B(H), which is positive

semi-definite, i.e.

⟨ψ|ρ|ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H, (1.3.13)

and has trace one, i.e. Tr[ρ] = 1.

1.4 Postulates of quantum mechanics

The postulates of quantum mechanics were derived after a long process of trial and error, which

involved a considerable amount of guessing and fumbling by the originators of the theory. The

motivation for them is not always clear; even to experts the basic postulates of quantum mechanics

appear surprising.

In this section, we mostly focus on the mathematical formulation for the postulates of quantum

mechanics in two different (and dual) settings, Heisenberg and Schrödinger picture. These two

descriptions will help us to understand the topics presented above.

1.4.1 Heisenberg picture

The postulates in the Heisenberg picture can be stated as follows.
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Postulate. 1

Given an isolated physical system, there is a complex Hilbert space H associated to it, called state

space. Moreover, the physical system is described by a state vector, a normalised vector in this

space.

In general, the state space H of the system under study will depend on the specific physical

system, but we know that it is a separable Hilbert space. Frequently, one restricts to finite-

dimensional Hilbert spaces for simplicity.

Postulate. 2

Given an isolated physical system, its evolution is described by a unitary. If the system is in

the state |φ1⟩ at time t = t1 and in the state |φ2⟩ at time t = t2, then there exists a unitary

U(t1, t2) = Ut1,t2 such that

|φ2⟩ = Ut1,t2 |φ1⟩ . (1.4.1)

This can be generalised using the Schrödinger equation: Given a closed quantum system (with

no interaction with an environment), the time evolution of a state on such system is described by

iℏ
d

dt
|φt⟩ = H |φt⟩ . (1.4.2)

where ℏ is the Planck’s constant. The linear self-adjoint operator H (generally time dependent)

is called Hamiltonian and describes the dynamics of the system. Let us consider the spectral

decomposition of the Hamiltonian (since it is a Hermitian operator):

H =
∑
Ei

Ei|Ei⟩⟨Ei|,

where we denote by Ei the eigenvalues and by |Ei⟩ the corresponding normalized eigenvectors, to

emphasize the fact that these eigenvalues represent some energies of the physical system. Indeed,

the states |Ei⟩ are usually called energy eigenstates or stationary states, with associated energy

Ei.

The lowest energy is known as ground state energy, and its associated eigenstate is known as

the ground state, a fundamental element in the theory of quantum systems. Moreover, when the

difference between the two smallest eigenvalues is strictly positive, this difference is called spectral

gap, and we say in that case that the system is gapped. Determining whether a physical system

has or not a spectral gap is a really important problem in Quantum Physics.

The states |Ei⟩ mentioned above are called stationary because their only change in time is of

the form

|Ei⟩ 7→ exp(−iEit/ℏ) |Ei⟩.

Let us see now the connection between the two formulations for this postulate. If we consider

the Schrödinger equation, we can see:

|φ(t2)⟩ = exp

[
−iH(t2 − t1)

ℏ

]
|φ(t1)⟩ = U(t1, t2) |φ(t1)⟩,

where we are defining:

U(t1, t2) := exp

[
−iH(t2 − t1)

ℏ

]
.

This operation is easily seen to be unitary, and, furthermore, one can see that any unitary operator

U can be written in the form
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U = exp(iK),

for some Hermitian operator K.

Postulate. 3

Given a physical system, with associated Hilbert space H, the quantum measurements over such

system are described by a collection {Mn}n ⊂ B(H) of measurements as defined in Definition 1.3.1.

More specificaly, the index n refers to the measurement outcomes that may occur in the ex-

periment, and given a state of a quantum system |φ⟩ before a measurement, the probability that

result |n⟩ occurs is given by

p(n) = ⟨φ|M∗
nMn|φ⟩

and the state of the system after the measurement is given by

Mn |φ⟩√
p(n)

.

Finally, measurement operators satisfy: ∑
n

M∗
nMn = 1.

Finally, the fourth postulate can be stated as follows.

Postulate. 4

Given a composite physical system, its state space is also composite, and corresponds to the tensor

product of the state spaces of the component physical systems. Moreover, if each system i is

prepared in the state |φi⟩, then the composite system is in the state |φ1⟩ ⊗ . . .⊗ |φn⟩.

After introducing the fourth postulate, it is necessary to make the following remark, which

leads to introducing the concept of entanglement. Consider two Hilbert spaces H1 and H2. Since

these two Hilbert spaces have inner products (resp. ⟨· | ·⟩1 and ⟨· | ·⟩2), it is a natural question

whether one can introduce an inner product, and therefore a topology, on the tensor product that

arise naturally from those of the factors. This can be done by defining the inner product as:

⟨φ1 ⊗ φ2 | ψ1 ⊗ ψ2⟩ = ⟨φ1 | ψ1⟩1 ⟨φ2 | ψ2⟩2

for every φ1, ψ1 ∈ H1 and φ2, ψ2 ∈ H2, and extending by linearity. Finally, we take the completion

under this inner product, and we get as the resulting Hilbert space the tensor product of H1 and

H2. This can be generalized to the tensor product of n Hilbert spaces.

Now, a composite Hilbert space, i.e., a Hilbert space of the form H1 ⊗H2 ⊗ . . .⊗Hn, contains

elements which are not tensor products of elements of each one of the components. In other words,

if |φ⟩ ∈ H1 ⊗H2 ⊗ . . .⊗Hn, there do not exist, in general, |φi⟩ ∈ Hi for all i so that

|φ⟩ = |φ1⟩ ⊗ |φ2⟩ ⊗ . . .⊗ |φn⟩.

A standard example of a non trivial two qubit state is the EPR pair [1], or Bell state is the following

state:

|ϕ+⟩ = |00⟩+ |11⟩√
2

.

This structure of tensor products leads to the definition of quantum entanglement, a behaviour

that seems to be at the root of many of the most surprising phenomena in quantum mechanics.
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Definition. 1.4.1 (Entanglement)

Given a state |φ⟩ ∈ H1 ⊗H2 ⊗ . . . ⊗Hn, we say that |φ⟩ is entangled if it cannot be written as

an elementary tensor product of the form

|φi⟩ ⊗ . . .⊗ |φn⟩ (1.4.3)

Notice that, in particular, one needs to have more than one system to talk about entangled

states.

1.4.2 Schrödinger Picture

In the Schrödinger picture, we consider density matrices instead of states.

Postulate. 1

Given an isolated physical system, there is a complex Hilbert space H which is known as the state

space of the system. This system is completely described by its density operator, which is a

Hermitian, positive semidefinite and trace one operator ρ ∈ S(H).

Moreover, if we know the probability of the system in every state (for each state ρi, the prob-

ability that the system is in that state is pi), then the state ρ can be written as∑
i

piρi.

Since the Heisenberg and Schrödinger picture are duals, there is an identification between

observables in the Heisenberg picture and density matrices in the Schrödinger one. This leads to

directly calling by states the density matrices, in a slight abuse of notation. With this notation,

we denote by pure states the density matrices of the form

ρ = |φ⟩ ⟨φ|

and by mixed states the ones of the form

ρ =
∑
i

pi|φi⟩⟨φi|.

For the second postulate, concerning evolution of systems, we have the following formulation.

Postulate. 2

Given an isolated physical system, with associated Hilbert space H, its evolution is described by

a unitary transformation. More specifically, if the state of the system t1 is described by the

density matrix ρ1 and the state of the system at instant t2 > t1 is described by ρ2, then there exist

a unitary operator U , which depends only on t1 and t2, such that

ρ2 = Uρ1U
∗.

As in the Heisenberg picture, the evolution of a density matrix is given by a unitary. To explain

the form of the statement of the second postulate, consider

ρ =
∑
i

pi|φi⟩⟨φi|.

Notice that, since the system initially is in the state |φi⟩ with probability pi, then after the evolution

given by a unitary U it will be in state U |φi⟩ with probability pi. Therefore, the associated density

operator will be given by∑
i

piU |φi⟩⟨φi|U∗ = U

(∑
i

pi|φi⟩⟨φi|

)
U∗ = UρU∗.
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Moving to the third postulate and the relation with quantum measurements, we have the following

formulation for it.

Postulate. 3

Given an isolated physical system, with associated Hilbert space H, any quantum measurements

on it are described by a collection of measurement operators {Mn}n as the ones described in

Definition 1.3.1. As in the case of the Heisenberg picture, each index n refers to the different

outcomes that may occur when measuring. Indeed, if the state of the quantum system is ρ before

the measurement, the probability that we get result n is given by

p(n) = Tr(M∗
nMnρ),

and the state that we get after the measurement is given by:

MnρM
∗
n

p(n)
.

Moreover, since probabilities need to sum one, these operators have to satisfy∑
n

M∗
nMn = 1.

Suppose that we measure with the measurement {Mn}n a mixed state of the form

ρ =
∑
i

pi|φi⟩⟨φi|.

Then, if the initial state is |φi⟩, for instance, the probability of having outcome n is

p(n|i) = ⟨φi|M∗
nMn|φi⟩ = Tr(M∗

nMn|φi⟩⟨φi|).

Hence, the total probability of this outcome is

p(n) =
∑
i

p(n|i)pi =
∑
i

pi Tr(M
∗
nMn|φi⟩⟨φi|) = Tr(ρM∗

nMn),

because of the definition of ρ. And analogously, one can see that the post-measurement state is

given by:

MnρM
∗
n

p(n)
.

Finally, concerning the state space of a composite physical system, we get the following postulate,

due to the linearity of tensor products.

Postulate. 4

Given a composite physical system, its state space is the tensor product of the state spaces of the

component physical systems.

Moreover, if each system i is initially prepared in state ρi, then the state in which the composite

system is prepared is given as the tensor product of the ρi, i.e., ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn.

These reformulations of the postulates of quantum mechanics in terms of the density operator

are, clearly, mathematically equivalent to the description in terms of the state vector. However, as

a way of thinking about quantum mechanics, the density operator approach has advantages with

respect to two main facts: the description of quantum systems whose state is not known, and the

description of subsystems of a composite quantum system.
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1.5 Quantum circuits

In this subsection, first, we present a brief survey on classical Boolean circuits, and, then, we

introduce some notions of quantum circuits, by outlining the difference with respect to the latter

ones.

1.5.1 Classical circuits

A classical circuit is used to represent functions from {0, 1}n to {0, 1}. It is a computational model

that consists of decomposing each function in some elemental operations, so that this procedure

allows us to represent all the possible functions in the domain. This model has good properties in

general and is fundamental in computational theory.

In classical complexity theory, we can define a Boolean circuit more formally as follows.

Definition. 1.5.1 (Boolean circuit)

A Boolean circuit is a finite directed acyclic graph composed of AND, OR an NOT gates (see

Figure 1.1).

A A
A

B
A+B

A

B
A ·B

A

B
A+B

A

B
A ·B

A

B
A⊕B

fig. 1.1: Some classical gates for two qubits. AND, OR and NOT are used to construct the rest.

An important theoretical result is that any function on bits can be computed from the compo-

sition of NAND gates alone, which is thus known as a universal gate. By contrast, the XOR alone

or even with NOT is not universal (one can notice that just by taking a look at the parity).

The idea of classical circuits lays on the following facts:

• Every circuit has n input nodes, which contain n input bits.

• The circuit is made of those three gates (AND, OR and NOT), and combinations of then, as

well as some output nodes.

• The initial input bits are fed into combinations of the previous gates, so that eventually the

output nodes assume some value.

Let f : {0, 1}n → {0, 1}m be a Boolean function. Then, we say that a circuit computes it if the

output nodes get the right value f(x) for every x ∈ {0, 1}n.
Now we can introduce some concepts related to the complexity of some circuits. Let us denote

a circuit family by a set C = {Cn}, each one of them of input size n (which means that the number
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of input nodes, and hence bits, is exactly n). We assume that each one of these circuits has one

output bit. Then, we say that this family recognizes a certain language L ⊆
⋃
n≥0

{0, 1}n (which we

denote hereafter by {0, 1}∗) if, for every x ∈ {0, 1}n, the circuit Cn outputs:

• 1 if x ∈ L.

• 0 if x /∈ L.

1.5.2 Quantum gates

Let us move now to quantum circuits, which generalize the idea of classical circuit families. In this

case, we replace the AND, OR and NOT gates by elementary quantum gates. We define a quantum

gate as a unitary transformation in a small number of qubits, usually 1, 2 or 3. The following are

the most important gates 1-qubit gates:

1. Bitflip gate: It negates the bit, i.e., swaps |0⟩ and |1⟩. It can be represented by:

X =

(
0 1

1 0

)
(1.5.1)

2. Phaseflip gate: It puts a - in front of |1⟩. It can be represented by:

Z =

(
1 0

0 −1

)
(1.5.2)

3. Phase gate: It rotates the phase of the |1⟩-state by an angle θ:

Rθ =

(
1 0

0 eiθ

)
(1.5.3)

4. Hadamard gate: It is specified by:

H =
1√
2

(
1 1

1 −1

)
(1.5.4)

The last one, the Hadamard gate, is possibly the most important 1-qubit gate. If we apply H to

an initial state |0⟩ and then measure, we have the same probability of observing |0⟩ or |1⟩, and
analogously if we apply it to initial |1⟩. However, when applied to the superposition state

1√
2
|0⟩+ 1√

2
|1⟩,

the Hadamard gate provides the value |0⟩. The effect that we get in this case (both positive and

negative amplitudes for |1⟩ cancelling out) is called interference. It is completely analogous to the

interference patterns that one can notice in light or sound waves.

We can further define gates that act on 2 qubits:

5. CNOT (Controlled not): Given two input bits, this gate is used to negate the second bit

if the first one is 1, and to leave it invariant if the first bit is 0. It can be represented by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.5.5)
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In this scenario, the first qubit is called the control qubit, since it is the one that determines the

effect of the gate, and the second one is called the target qubit, as it is the one that receives the

effect.

In general, if U is a 1-qubit gate (as the ones that we have defined above), then the we can

define the 2-qubit controlled-U gate analogously to the previous one, i.e., if the first bit is 0 it does

nothing, and, if it is 1, the gate applies the unitary to the second bit. We can represent it in the

following matrix form:

6. Controlled-U gate: If the first bit is 0 it does nothing, and, if it is 1, the gate applies the

unitary to the second bit. It is given by

CU =


1 0 0 0

0 1 0 0

0 0 U11 U12

0 0 U21 U22

 (1.5.6)

Another way to understand the quantum CNOT gate is as a generalization of the classical XOR

gate. Note, however, that there are some classical gates, like NAND or XOR, which cannot be

understood as unitary gates in a sense similar to the way the quantum NOT gate represents the

classical NOT gate. The reason is because these two gates are essentially irreversible.

We can see that in the following example: Given an output A ⊕ B of a XOR gate, it is not

possible to determine what the inputs A and B were. This can be also stated by saying that there

is a loss of information associated with the irreversible action of the XOR gate. On the other hand,

since quantum gates are described by unitary matrices, it is important to remark that they can

always be inverted by another quantum gate.

Further we name the following 3-qubit gate, which is particularly interesting as it is classically

universal. This means every classical computation can be implemented by a sequence of Toffoli

gates.

7. Toffoli gate or CCNOT (Controlled-Controlled-NOT gate): It negates the third bit

of its input if both the first two bits are 1.

All those gates mentioned above can be composed into bigger unitary operations in the following

ways:

• By taking tensor products, if the gates are applied in parallel.

• By taking matrix products, if the gates are applied sequentially.

We show now an example of these operations. If we apply a Hadamard gate H to each bit in a

register of n zeros, we get

1√
2n

∑
j∈{0,1}n

|j⟩,

a superposition of all n-bit strings, whereas applying H⊗n to an initial state |i⟩, with i ∈ {0, 1}n

gives us

H⊗n |i⟩ = 1√
2n

∑
j∈{0,1}n

(−1)i·j |j⟩,

with i · j =
n∑

k=1

ikjk the inner product of the n-bit strings i, j ∈ {0, 1}n. In this case, one can also

notice that the Hadamard is its own inverse. Thus, if we apply it again on the right-hand side of
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the previous expression, we get the initial |i⟩. This makes the Hadamard gate quite useful for the

development of algorithms, as we will see in the following section.

To sum up, as in the case for classical circuits, one can define a quantum circuit in the following

form.

Definition. 1.5.2 (Quantum circuit)

A quantum circuit is a finite directed acyclic graph composed by:

• Input nodes. Some of these nodes (n nodes) contain the input, and some more nodes are

initially |0⟩ (they are called the workspace).

• Quantum gates. Each of them operates on, at most, two or three qubits of the state.

• Output nodes. The previous gates transform the initial state vector into a final state,

which will generally be a superposition.

Let us see now how one can draw these circuits. We usually consider that time progresses

from left to right. As briefly mentioned above, each qubit is represented as a wire, and the circuit

prescribes which gates are applied to each wire.

With this notation of wires, it is clear that 1-qubit gates act on just one wire, whereas 2-qubit

and 3-qubit gates act, respectively, on 2 or 3 wires. Moreover, when a gate acts on more than

1 qubit, and one of them is the control one, its wire is drawn with a dot linked vertically to the

target qubits, i.e., the qubits where this effect is applied.

We show an example of this notation in the following figure.

fig. 1.2: Circuit used to turn |00⟩ into 1√
2
(|00⟩ − |11⟩).

In this example, and in general, we denote the quantum CNOT by ⊕. If we study every step

separately, and taking into account the definition for every gate mentioned above, we can see that,

after each step, the resulting state is:

• Step 0. We start with |φ0⟩ = |00⟩.

• Step 1. After the Hadarmard gate, we have |φ1⟩ =
1√
2
(|00⟩+ |10⟩).

• Step 2. When we apply the CNOT gate, we get |φ2⟩ =
1√
2
(|00⟩+ |11⟩).

• Step 3. Finally, after the Z gate, we have |φ3⟩ =
1√
2
(|00⟩ − |11⟩).
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