Quantum Information Theory
SoSe 2023

Basic Notions in Quantum Computation

Warm-up exercises

Problem 1. Bra-kets and inner products

1. Write down the matrix representation for the following expressions:
a) $|0\rangle\langle 1|$.
b) $|0\rangle\langle 0|+|1\rangle\langle 1|$.
c) $|+\rangle\langle 0|$.
2. Define the Hadamard gate as

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Express it in the computational basis.
3. Compute $H|+\rangle$ using the bra-ket notation.
4. Let $|\varphi\rangle,|\psi\rangle \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$. Prove that the following holds:

$$
\langle\varphi \mid A \psi\rangle=\left\langle A^{*} \varphi \mid \psi\right\rangle
$$

5. Prove that unitary matrices are norm-preserving.

Problem 2. Tensor products.

1. Consider two vectors $\binom{a_{1}}{a_{2}},\binom{b_{1}}{b_{2}} \in \mathbb{C}^{2}$. Express the product

$$
\binom{a_{1}}{a_{2}} \otimes\binom{b_{1}}{b_{2}}
$$

as a vector in \mathbb{C}^{4}.
2. Given two matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right),\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \in \mathbb{C}^{2 \times 2}$, write an expression for

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \otimes\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

as a matrix of dimension 4×4.

Graded exercises

Problem 3. Bell states. Let us define the Bell states as

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Show that they form an orthonormal basis of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.

Problem 4. Pauli matrices. The Pauli matrices are given by:

$$
I=\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1. Verify the following commutation relations:

$$
[X, Y]=2 i Z, \quad[Y, Z]=2 i X, \quad[Z, X]=2 i Y
$$

2. Verify the following anticommutation relations:

$$
A, B=2 \delta_{A, B}, \quad \text { for } A, B \in\{X, Y, Z\}
$$

3. Compute the eigenvalues of the Pauli matrices.

Problem 5. Hermitian matrices of dimension 2×2. Let $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{C}$. Consider the following matrix:

$$
A=\left(\begin{array}{cc}
\frac{1+\alpha}{2} & \beta \\
\beta^{*} & \frac{1-\alpha}{2}
\end{array}\right)
$$

1. Show that A is Hermitian and $\operatorname{tr}(A)=1$.
2. Show that any Hermitian matrix in dimension 2×2 with unit trace can be expressed in this form.
3. Show that A can be uniquely expressed as a linear combination of the Pauli matrices.

Now, consider an arbitrary 2×2 Hermitian matrix ρ with unit trace, which we can write as

$$
\rho=\frac{1}{2}\left(I+n_{x} X+n_{y} Y+n_{z} Z\right)
$$

with $n_{x}, n_{y}, n_{z} \in \mathbb{R}$.

1. Compute the eigenvalues of ρ and express them in terms of n_{x}, n_{y}, n_{z}.
2. Denote $\mathbf{n}:=\left(n_{x}, n_{y}, n_{z}\right)$. Show that $\rho \geq 0$ if, and only if, $|\mathbf{n}| \leq 1$.
3. Show that if $|\mathbf{n}|=1$, then there are $v_{1}, v_{2} \in \mathbb{C}$ such that

$$
\rho=\binom{v_{1}}{v_{2}}\left(\begin{array}{ll}
v_{1}^{*} & v_{2}^{*}
\end{array}\right)
$$

Challenge exercise

Problem 6. Distinguishing quantum states

1. Prove that no measurement can distinguish two non-orthogonal states with probability 1.
2. Prove that, given a qubit in either of two non-orthogonal states $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle$, there is a POVM $\left(E_{1}, E_{2}, E_{3}\right)$ with three outcomes $1,2,3$ such that if the outcome is 1 , then the state is $\left|\varphi_{1}\right\rangle$, if the outcome is 2 , then the state is $\left|\varphi_{2}\right\rangle$ and nothing can be concluded if the outcome is 3 .
