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Quantum circuits

Warm-up exercises

Problem 1. Consider a two qubit unitary gate U that accomplishes the following transformation:

• |00⟩ 7→ |++⟩,

• |10⟩ 7→ |−+⟩,

• |01⟩ 7→ |+−⟩,

• |11⟩ 7→ eiφ |−−⟩.

Find φ such that

1. U = UA ⊗ UB for some single qubit unitaries UA and UB.

2. U ̸= UA ⊗ UB for any single qubit unitaries UA and UB.

Problem 2. Prove that a state |ψ⟩ of a composite system AB is a product state if, and only if, it has
Schmidt rank 1. Prove that |ψ⟩ is a product state if, and only if, for ρAB := |ψ⟩ ⟨ψ|, ρA (and thus ρB)
is a pure state.

Hint: Recall that ρ is a pure state if it can be written as ρ = |ϕ⟩ ⟨ϕ|.

Graded exercises

Problem 3.

1. Construct a reversible circuit which, when given two input bits x and y, it outputs (x, y, c, x⊕y),
where c is the carry bit when x and y are added.

Hint: c should be 1 if x = y = 1 and 0 elsewhere.

2. Construct a quantum circuit to add two two-bit numbers x and y modulo 4. That is, the circuit
should perform the transformation |x, y⟩ 7→ |x, x+ y mod 4⟩.
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Problem 4. Consider this single qubit model of an interferometer, where the goal is to estimate an
unknown phase ϕ:

Let the box with ϕ map |0⟩ to |0⟩ and |1⟩ to eiϕ |1⟩.

• Give the states |ψ1⟩ , |ψ2⟩ , |ψ3⟩.

• What is the probability p of measuring the final qubit to be one?

• If this experiment is repeated n times, what is the standard deviation ∆p of the value estimated
for p from the measurement results? Also, give the uncertainty in the resulting estimate for ϕ,
given by ∆ϕ = ∆p/ | dp/dϕ |.

Hint: The standard deviation ∆p is given by
√
< p2 > − < p >2, where < ·, · > here denotes

’expectation’.

Problem 5. The role of the control and target qubit of a CNOT gate can be reversed by switching
to a different basis. First, show that the following equality of circuits holds:

Use this identity to derive the following relations:

• CNOT |++⟩ = |++⟩ ,

• CNOT |−+⟩ = |−+⟩ ,

• CNOT |+−⟩ = |−−⟩ ,

• CNOT |−−⟩ = |+−⟩ .

Hint: Recall that
|±⟩ = 1√

2
(|0⟩ ± |1⟩) .

2



Challenge exercise

Problem 6. An essential result in quantum computation is that H, CNOT, and the Pauli gates are
not universal for quantum computation. In fact, any quantum circuit composed from those gates
(together with standard input states and measurements in the computational basis) can be simulated
efficiently by a classical computer! This result is known as the Gottesman-Knill theorem. The purpose
of this problem is to prove the key result behind the theorem.

Let Gn denote the Pauli group on n qubits (that is, matrix multiplication acting on the set of n-fold
tensor products of Pauli matrices, including multiplicative factors ±1, ±i). By definition, we say the
set of U such that UGnU

∗ = Gn is the normalizer of Gn, and denote it by N(Gn). The following
theorem about the normalizer of the Pauli group holds:

Suppose U is any unitary operator on n qubits with the property that if g ∈ Gn then UgU∗ ∈ Gn.
Then, up to a global phase, U may be composed from O(n2) H, phase and CNOT gates.

We can construct an inductive proof of this theorem as follows:

1. Prove that the Hadamard and phase gates can be used to perform any normalizer operation on
a single qubit.

2. Suppose that U is an n+1 qubit gate inN(Gn+1) such that UZ1U
∗ = X1⊗g and UX1U

∗ = Z1⊗g′
for some elements g, g′ ∈ Gn. Define U ′ on n qubits by U ′ |ψ⟩ =

√
2 ⟨0|U(|0⟩ ⊗ |ψ⟩). Use the

inductive hypothesis to show that this construction for U :

may be implemented using O(n2) Hadamard, phase and CNOT gates.

3. Show that any gate U ∈ N(Gn+1) may be implemented using O(n2) Hadamard, phase and
CNOT gates.

Hint: You can use the following two lemmas without proving them:

Lemma 1: Given any Pauli operator g, there is some product of Hadamards and phase gates N such
that NgN∗ = Z.

Lemma 2: Given any two different Pauli matrices σ ̸= σ′, there is some product of Hadamards and
phase gates N such that NσN∗ = X and Nσ′N∗ = Z. Therefore,

N · SWAP1j · U · Z1 · (N · SWAP1j · U)∗ = X1 ⊗ g ,

N · SWAP1j · U ·X1 · (N · SWAP1j · U)∗ = Z1 ⊗ g .
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