Sheet 3

15. May 2023

Quantum circuits

Warm-up exercises

Problem 1. Consider a two qubit unitary gate U that accomplishes the following transformation:

- $|00\rangle \mapsto|++\rangle$,
- $|10\rangle \mapsto|-+\rangle$,
- $|01\rangle \mapsto|+-\rangle$,
- $|11\rangle \mapsto \mathrm{e}^{i \varphi}|--\rangle$.

Find φ such that

1. $U=U_{A} \otimes U_{B}$ for some single qubit unitaries U_{A} and U_{B}.
2. $U \neq U_{A} \otimes U_{B}$ for any single qubit unitaries U_{A} and U_{B}.

Problem 2. Prove that a state $|\psi\rangle$ of a composite system $A B$ is a product state if, and only if, it has Schmidt rank 1. Prove that $|\psi\rangle$ is a product state if, and only if, for $\rho_{A B}:=|\psi\rangle\langle\psi|, \rho_{A}$ (and thus ρ_{B}) is a pure state.

Hint: Recall that ρ is a pure state if it can be written as $\rho=|\phi\rangle\langle\phi|$.

Graded exercises

Problem 3.

1. Construct a reversible circuit which, when given two input bits x and y, it outputs $(x, y, c, x \oplus y)$, where c is the carry bit when x and y are added.

Hint: c should be 1 if $x=y=1$ and 0 elsewhere.
2. Construct a quantum circuit to add two two-bit numbers x and y modulo 4. That is, the circuit should perform the transformation $|x, y\rangle \mapsto|x, x+y \bmod 4\rangle$.

Problem 4. Consider this single qubit model of an interferometer, where the goal is to estimate an unknown phase ϕ :

Let the box with ϕ map $|0\rangle$ to $|0\rangle$ and $|1\rangle$ to $e^{i \phi}|1\rangle$.

- Give the states $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left|\psi_{3}\right\rangle$.
- What is the probability p of measuring the final qubit to be one?
- If this experiment is repeated n times, what is the standard deviation Δp of the value estimated for p from the measurement results? Also, give the uncertainty in the resulting estimate for ϕ, given by $\Delta \phi=\Delta p /|d p / d \phi|$.
Hint: The standard deviation Δp is given by $\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}$, where $\langle\cdot, \cdot\rangle$ here denotes 'expectation'.

Problem 5. The role of the control and target qubit of a CNOT gate can be reversed by switching to a different basis. First, show that the following equality of circuits holds:

Use this identity to derive the following relations:

- $C N O T|++\rangle=|++\rangle$,
- CNOT $|-+\rangle=|-+\rangle$,
- CNOT $|+-\rangle=|--\rangle$,
- CNOT $|--\rangle=|+-\rangle$.

Hint: Recall that

Challenge exercise

Problem 6. An essential result in quantum computation is that H, CNOT, and the Pauli gates are not universal for quantum computation. In fact, any quantum circuit composed from those gates (together with standard input states and measurements in the computational basis) can be simulated efficiently by a classical computer! This result is known as the Gottesman-Knill theorem. The purpose of this problem is to prove the key result behind the theorem.

Let G_{n} denote the Pauli group on n qubits (that is, matrix multiplication acting on the set of n-fold tensor products of Pauli matrices, including multiplicative factors $\pm 1, \pm i)$. By definition, we say the set of U such that $U G_{n} U^{*}=G_{n}$ is the normalizer of G_{n}, and denote it by $N\left(G_{n}\right)$. The following theorem about the normalizer of the Pauli group holds:

Suppose U is any unitary operator on n qubits with the property that if $g \in G_{n}$ then $U g U^{*} \in G_{n}$. Then, up to a global phase, U may be composed from $O\left(n^{2}\right) H$, phase and CNOT gates.

We can construct an inductive proof of this theorem as follows:

1. Prove that the Hadamard and phase gates can be used to perform any normalizer operation on a single qubit.
2. Suppose that U is an $n+1$ qubit gate in $N\left(G_{n+1}\right)$ such that $U Z_{1} U^{*}=X_{1} \otimes g$ and $U X_{1} U^{*}=Z_{1} \otimes g^{\prime}$ for some elements $g, g^{\prime} \in G_{n}$. Define U^{\prime} on n qubits by $U^{\prime}|\psi\rangle=\sqrt{2}\langle 0| U(|0\rangle \otimes|\psi\rangle)$. Use the inductive hypothesis to show that this construction for U :

may be implemented using $O\left(n^{2}\right)$ Hadamard, phase and CNOT gates.
3. Show that any gate $U \in N\left(G_{n+1}\right)$ may be implemented using $O\left(n^{2}\right)$ Hadamard, phase and CNOT gates.

Hint: You can use the following two lemmas without proving them:
Lemma 1: Given any Pauli operator g, there is some product of Hadamards and phase gates N such that $N g N^{*}=Z$.

Lemma 2: Given any two different Pauli matrices $\sigma \neq \sigma^{\prime}$, there is some product of Hadamards and phase gates N such that $N \sigma N^{*}=X$ and $N \sigma^{\prime} N^{*}=Z$. Therefore,

$$
\begin{aligned}
& N \cdot S W A P_{1 j} \cdot U \cdot Z_{1} \cdot\left(N \cdot S W A P_{1 j} \cdot U\right)^{*}=X_{1} \otimes g, \\
& N \cdot S W A P_{1 j} \cdot U \cdot X_{1} \cdot\left(N \cdot S W A P_{1 j} \cdot U\right)^{*}=Z_{1} \otimes g
\end{aligned}
$$

