Sheet 4

Quantum simulation

Graded exercises

Problem 1. We are given a set of unitaries U_{1}, \ldots, U_{M} acting on n qubits. Furthermore, there is another register (called the clock register), with states $|t\rangle$ with $t=0, \ldots, M$. Consider the Hamiltonian

$$
H=-\left|0^{n}\right\rangle\left\langle 0^{n}\right| \otimes|0\rangle\langle 0|-\mathrm{id} \otimes|M\rangle\langle M|-\sum_{t=0}^{M-1}\left(U_{t+1} \otimes|t+1\rangle\langle t|+\text { h. c. }\right) .
$$

Note that 'h.c.' means Hermitian conjugate, and is used to denote the Hermitian conjugates of the terms that appear just before. We would like to investigate the ground state of this Hamiltonian. Consider the operator W,

$$
W=\mathrm{id} \otimes|0\rangle\langle 0|+\sum_{t=1}^{M} U_{t} \ldots U_{2} U_{1} \otimes|t\rangle t \mid
$$

1. Show that W is unitary.
2. Compute the Hamiltonian $H^{\prime}=W^{*} H W$.
3. Show that the state

$$
|G\rangle=\frac{1}{\sqrt{M+1}}\left(\sum_{t=1}^{M} U_{t} \ldots U_{2} U_{1}\left|0^{n}\right\rangle|t\rangle+\left|0^{n}\right\rangle|0\rangle\right)
$$

is the ground state of the Hamiltonian H.
Hint: To compute the ground state of H, do it first for H^{\prime} and use the relation between H and H^{\prime}. Hint 2: If you need it, you can assume that the clock register is large enough, such that the boundary at $t=0$ and $t=M$ can be neglected.

Problem 2. Consider the unitary $U=\exp (i(X+Z) t)$. Show that

1. $U \neq \exp (i X t) \exp (i Z t)$. In particular, show that

$$
\|U-\exp (i X t) \exp (i Z t)\| \leq O\left(t^{2}\right)
$$

where, for a matrix M, the norm we are taking is $\|M\|=\sup _{|\psi\rangle \neq 0} \| M|\psi\rangle\|/\||\psi\rangle \|$, and $\||\psi\rangle \|=$ $\sqrt{\left|\psi_{1}\right|^{2}+\ldots+\left|\psi_{n}\right|^{2}}$.
2. Consider the unitary U_{M} given by

$$
U_{M}=\left(\exp \left(i X \frac{t}{M}\right) \exp \left(i Z \frac{t}{M}\right)\right)^{M}
$$

Using the result from the previous part, show that

$$
\left\|U-U_{M}\right\| \leq O\left(t^{2} / M\right)
$$

Problem 3. Consider the two-qubit Heisenberg Hamiltonian

$$
H(t)=J(t) \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}=\frac{J(t)}{4}\left[X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}\right] .
$$

1. Show that a SWAP operation (denoted by U) can be implemented by turning on $J(t)$ for an appropriate amount of time τ, to obtain $U=\exp \left(-i \pi \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right)$.
Hint: Compute the eigenvalues of the SWAP gate, as well as those of $\overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}=\frac{X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}}{4}$, and compare them. Set $J(t)=1$ for time π for simplicity.
2. Compute the gate that we obtain by turning on $J(t)$ for time $\tau / 2$, which we denote by $\sqrt{S W A P}$. Together with arbitrary single qubit gates, the $\sqrt{S W A P}$ gate is universal for quantum computation.

Challenge exercise

Problem 4. Here, we are going to prove that Grover's algorithm can be derived from a Schrödinger time evolution equation governed by a certain Hamiltonian H. For simplicity, we assume that there is a single solution $x \in\{0, \ldots, N-1\}$ to Grover's problem with N elements and we start from an arbitrary initial state $|\psi\rangle$. It turns out that the Hamiltonian

$$
H=|x\rangle\langle x|+|\psi\rangle\langle\psi|
$$

achieves a transition from $|\psi\rangle$ to $|x\rangle$ for a certain time t^{*}, i.e. $\mathrm{e}^{-i H t^{*}}|\psi\rangle=|x\rangle$. To understand it, first note that the time dynamics under H never leave the two-dimensional space spanned by $|x\rangle$ and $|\psi\rangle$. Consider a vector $|y\rangle$ such that $\{|x\rangle,|y\rangle\}$ forms an orthonormal basis of this subspace, and represent $|\psi\rangle=\alpha|x\rangle+\beta|y\rangle$ with coefficients $\alpha, \beta \in \mathbb{C}$, with $|\alpha|^{2}+|\beta|^{2}=1$. For simplicity, let us assume that the phases of $|x\rangle,|y\rangle$ and $|\psi\rangle$ are such that α and β are real.

1. Show that the matrix representation of H within this subspace is given by

$$
H=I+\alpha(\beta X+\alpha Z) .
$$

2. From the previous expression, we obtain $\mathrm{e}^{-i H t}=\mathrm{e}^{-i t} \mathrm{e}^{-i \alpha t(\beta X+\alpha Z)}$, where the factor $\mathrm{e}^{-i t}$ appears from the identity matrix in the representation. Use the single-qubit maps for rotations to verify that

$$
\mathrm{e}^{-i H t}=\mathrm{e}^{-i t}(\cos (\alpha t) I-i \sin (\alpha t)(\beta X+\alpha Z)) .
$$

3. Show that $(\beta X+\alpha Z)|\psi\rangle=|x\rangle$. Jointly with the previous part, obtain

$$
\mathrm{e}^{-i H t}|\psi\rangle=\mathrm{e}^{-i t}(\cos (\alpha t)|\psi\rangle-i \sin (\alpha t)|x\rangle) .
$$

4. Specify a time t^{*} such that $\mathrm{e}^{-i H t^{*}}|\psi\rangle=|x\rangle$, up to a phase factor.
5. Since the required time t^{*} depends on $\alpha=\langle x \mid \psi\rangle$ and thus seemingly on the solution x (which, a priori, we do not know), a natural question is how to determine t^{*}. To solve this equation, one can choose $|\psi\rangle$ to be the equal superposition state. Compute α in this case, assuming that $|\psi\rangle$ is normalized.

Now, we are going to approximate the effect of the Hamiltonian via the Trotter formula:

$$
\lim _{n \rightarrow \infty}\left(\mathrm{e}^{-i H_{1} t / n} \mathrm{e}^{-i H_{2} t / n}\right)^{n}=\mathrm{e}^{-i\left(H_{1}+H_{2}\right) t}
$$

For that, we are going to consider a small time step $\Delta t=t / n$ and $H_{1}=|x\rangle\langle x|$ and $H_{2}=|\psi\rangle\langle\psi|$.
6. Show that the following circuit implements $\mathrm{e}^{-i H_{1} \Delta t}$:

where G is given by $G=\left(\begin{array}{cc}1 & 0 \\ 0 & \mathrm{e}^{-i \Delta t}\end{array}\right)$ and O is an oracle that maps $|y\rangle|0\rangle$ to $|y\rangle|1\rangle$ if $x=y$, and leaves it invariant otherwise.

Hint: Represent the input in the following form:

$$
|y\rangle|0\rangle=(I-|x\rangle\langle x|)|y\rangle|0\rangle+|x\rangle\langle x \mid y\rangle|0\rangle
$$

and use the series expansion of the exponential to show

$$
\mathrm{e}^{-i|x\rangle\langle x| \Delta t}=I-|x\rangle\langle x|+\mathrm{e}^{-i \Delta t}|x\rangle\langle x|
$$

7. Modify the oracle to design a circuit analogous to the one above that implements the time evolution with respect to $|\psi\rangle\langle\psi|$ instead, for the cases:
a) $|\psi\rangle=|+\rangle^{\otimes 3}$.
b) $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)|1\rangle$.
8. Identify the circuits from the last two parts for a time step $\Delta t=\pi$ with the building blocks of the circuit diagram of Grover's algorithm.
