Quantum Information Theory SoSe 2023 Universität Tübingen Ángela Capel Paul Gondolf

14. June 2023

Sheet 6

Quantum channels and open systems

Graded exercises

Problem 1. Consider the following two-qubit Hamiltonian:

$$H(\Delta) = Z \otimes Z + \Delta(X \otimes I + I \otimes X).$$

We want to study the properties of the thermal state ρ_{β} :

$$\rho(\Delta, \beta) = \frac{\mathrm{e}^{-\beta H(\Delta)}}{\mathrm{Tr}[\mathrm{e}^{-\beta H(\Delta)}]}$$

as a function of Δ and β .

- 1. Compute the eigenvalues of $H(\Delta)$.
- 2. Consider $\rho(\beta \to 0, \Delta)$. For which values of Δ is the thermal state separable, and for which entangled?
- 3. Consider $\rho(\beta \to \infty, \Delta)$. For which values of Δ is the thermal state separable, and for which entangled?

(Hint: In 1. it might be easier to study how each of the terms of the Hamiltonian act on Bell states)

Problem 2. Consider a quantum channel \mathcal{E} on a qubit which measures the operator X on the qubit and:

- If the outcome of the measurement is +1, the qubit is erased and replaced with the state $\frac{1+\varepsilon_+}{2}|0\rangle\langle 0| + \frac{1-\varepsilon_+}{2}|1\rangle\langle 1|$.
- If the outcome of the measurement is +1, the qubit is erased and replaced with the state $\frac{1+\varepsilon_{-}}{2}|0\rangle\langle 0| + \frac{1-\varepsilon_{-}}{2}|1\rangle\langle 1|.$

In both cases, $\varepsilon_{\pm} \in (-1, 1)$.

- 1. Write an expression for $\mathcal{E}(\rho)$ in terms of ρ , where ρ is the single qubit state on which the map is applied. Show that the map is trace-preserving and positive.
- 2. Write down the Kraus representation for this channel.
- 3. Calculate the fixed points of this channel, i.e. the states ρ for which $\mathcal{E}(\rho) = \rho$.
- 4. Solve the master equation corresponding to the purely dissipative Lindbladian (with no Hamiltonian) with the jump operators $|0\rangle \langle +|, |1\rangle \langle -|$ and show that $\mathcal{E} = \lim_{t\to\infty} e^{\mathcal{L}t}$.

Challenge exercises

Problem 3. Let ρ be a density matrix for two qubits A and B such that the reduced state on qubit A is pure, i.e. $\operatorname{tr}_B(\rho) = |\psi\rangle \langle \psi|$ for some $|\psi\rangle$. Show that

- 1. If ρ is a pure state, then the reduced state on the qubit B is also pure.
- 2. ρ is a product state.

Problem 4. Consider the transposition map over $\mathbb{C}^{d \times d}$, i.e. the map that transforms $\rho \in \mathbb{C}^{d \times d}$ to ρ^T . Show that this map is positive, but not completely positive.

Hint: Consider the state

$$\rho_p := p |\psi^-\rangle \langle \psi^-| + (1-p)\frac{1}{4},$$

for $|\psi^-\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$, where $p \in (0,1)$, and compute its partial transpose with respect to the second qubit.