Sheet 6
14. June 2023

Quantum channels and open systems

Graded exercises

Problem 1. Consider the following two-qubit Hamiltonian:

$$
H(\Delta)=Z \otimes Z+\Delta(X \otimes I+I \otimes X)
$$

We want to study the properties of the thermal state ρ_{β} :

$$
\rho(\Delta, \beta)=\frac{\mathrm{e}^{-\beta H(\Delta)}}{\operatorname{Tr}\left[\mathrm{e}^{-\beta H(\Delta)}\right]}
$$

as a function of Δ and β.

1. Compute the eigenvalues of $H(\Delta)$.
2. Consider $\rho(\beta \rightarrow 0, \Delta)$. For which values of Δ is the thermal state separable, and for which entangled?
3. Consider $\rho(\beta \rightarrow \infty, \Delta)$. For which values of Δ is the thermal state separable, and for which entangled?
(Hint: In 1. it might be easier to study how each of the terms of the Hamiltonian act on Bell states)

Problem 2. Consider a quantum channel \mathcal{E} on a qubit which measures the operator X on the qubit and:

- If the outcome of the measurement is +1 , the qubit is erased and replaced with the state $\frac{1+\varepsilon_{+}}{2}|0\rangle\langle 0|+\frac{1-\varepsilon_{+}}{2}|1\rangle\langle 1|$.
- If the outcome of the measurement is +1 , the qubit is erased and replaced with the state $\frac{1+\varepsilon_{-}}{2}|0\rangle\langle 0|+\frac{1-\varepsilon_{-}}{2}|1\rangle\langle 1|$.

In both cases, $\varepsilon_{ \pm} \in(-1,1)$.

1. Write an expression for $\mathcal{E}(\rho)$ in terms of ρ, where ρ is the single qubit state on which the map is applied. Show that the map is trace-preserving and positive.
2. Write down the Kraus representation for this channel.
3. Calculate the fixed points of this channel, i.e. the states ρ for which $\mathcal{E}(\rho)=\rho$.
4. Solve the master equation corresponding to the purely dissipative Lindbladian (with no Hamiltonian) with the jump operators $|0\rangle\langle+|,|1\rangle\langle-|$ and show that $\mathcal{E}=\lim _{t \rightarrow \infty} \mathrm{e}^{\mathcal{L} t}$.

Challenge exercises

Problem 3. Let ρ be a density matrix for two qubits A and B such that the reduced state on qubit A is pure, i.e. $\operatorname{tr}_{B}(\rho)=|\psi\rangle\langle\psi|$ for some $|\psi\rangle$. Show that

1. If ρ is a pure state, then the reduced state on the qubit B is also pure.
2. ρ is a product state.

Problem 4. Consider the transposition map over $\mathbb{C}^{d \times d}$, i.e. the map that transforms $\rho \in \mathbb{C}^{d \times d}$ to ρ^{T}. Show that this map is positive, but not completely positive.

Hint: Consider the state

$$
\rho_{p}:=p\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|+(1-p) \frac{\mathbb{1}}{4},
$$

for $\left|\psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}$, where $p \in(0,1)$, and compute its partial transpose with respect to the second qubit.

