Mock Exam, Mathematical Statistical Physics

Prof. Dr. Peter Pickl

July 21, 2023

(1) Let $E = \{1, 2, 3, 4, 5\}$ and X_t be a Markov chain with transition matrix '

Find all classes of this Markov chain and decide, weather they are closed or open. Give one stationary state of that Markov chain.

(2) Let $T: [0,1] \to [0,1]$ be the Farey map which is given by:

$$T(x) = \begin{cases} \frac{x}{1-x}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{1-x}{x}, & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Show that for any interval $I \subset [0,1]$ it holds that $\mathbb{M}(I) = \mathbb{M}(T^{-1}(I))$ preserves the measure given by the density $\frac{1}{x}$, i.e. by

$$\mathbb{M}\left(A\right) = \int_{A} \frac{1}{x} dx$$

Note, that \mathbb{M} is not a probability measure.

- (3) Let X be a random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that the function $f(x) := \mathbb{P} (x \leq X \leq 0)$ is continuous from the left, i.e. that $\lim_{h \neq 0} f(x+h) = f(x)$ for all $x \in \mathbb{R}$. Here $\lim_{h \neq 0}$ stands for the limit $h \to 0$ restricted to negative values of h.
- (4) Let $T : \Omega \to \Omega$ and \mathbb{P} be a measure on (Ω, \mathcal{A}) that is invariant under T. Let $A \in \mathcal{A}$ be a measurable set with $\mathbb{P}(A) > 0$. As we all know, it follows that the conditional probabilities \mathbb{P}_A and \mathbb{P}_{A^c} are also probability measures (no proof required!). Here A^c stands for the complement of A.
 - (a) Prove that if T is measure preserving and $T^{-1}(A) = A$ it follows that \mathbb{P}_A and \mathbb{P}_{A^c} are measure preserving.
 - (b) A probability measure \mathbb{P} is called decomposable with respect to T if for some measurable $A \in \mathcal{A}$ with $\mathbb{P}(A) > 0$.

$$\mathbb{P} = \lambda \mathbb{P}_A + (1 - \lambda) \mathbb{P}_{A^c} \text{ with } \lambda \in]0, 1[$$

Show that if \mathbb{P} is indecomposable with respect to T then T is ergodic (with respect to \mathbb{P}).