Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl
Manuela Feistl

Sheet 10

Exercise 1: (Maxwell-Boltzmann distribution)
Consider N particles which are distributed among k boxes of equal size. Assume that a particle in box number k has an energy given by E_{k} and that the total energy is given by E. What density distribution (i.e. what numbers of particles in the different boxes) maximizes the entropy.
Argue that a confined Newtonian system of N particles approaches this distribution.
Hint: Since $N \gg m$ one may assume that $N_{j} \gg 1$ for all $j=1, \ldots, m$ and can approximate $N_{j}!\approx\left(\frac{N_{j}}{e}\right)^{N_{j}}$ by Stirling formula. This allows N_{j} to be treated as continuous variables. Minify $\ln \left(W_{N}\right)$ instead of W_{N}.

Exercise 2: (Maxwell-Boltzmann distribution II)
Let $f(\vec{x}, \vec{v}, t)$ be particle distribution function with velocity \vec{v}, position \vec{x} and time t, and let us define mass density $\rho(\vec{x}, t):=\int_{\mathbb{R}^{3}} f(\vec{x}, \vec{v}, t) d \vec{v}$ and momentum density $\rho(\vec{x}, t) \cdot \vec{u}(\vec{x}, t):=$ $\int_{\mathbb{R}^{3}} \vec{v} \cdot f(\vec{x}, \vec{v}, t) d \vec{v}$. Show the following:
a) Assume a flow of homogeneous particles where each particle has the velocity \vec{u} with uniform distribution $f(\vec{x}, \vec{v}, t)=\rho \delta(\vec{v}-\vec{u})$ defined by Delta-Distribution, calculate mass and momentum density.
b) Assume a flow at equilibrium of Maxwell-distribution where the particle velocity are normal-distributed around the mean velocity \vec{u} given by $f(\vec{x}, \vec{v}, t)=\rho\left(\frac{1}{2 \pi C T}\right)^{\frac{3}{2}} \exp -\frac{|\vec{v}-\vec{u}|^{2}}{2 C T}$, where C is a constant, and the variance is depending on the temperature T, calculate the mass density.

Exercise 3: (Maxwell-Boltzmann distribution III) Consider a system of N particles with dynamics given by $\dot{x_{j}}=v_{j}$ and $\dot{v}_{j}=F\left(x_{j}\right)$. Assume that $F=\nabla V$ is the gradient of a spherically symmetric potential V which tends to infinity as $|x|$ tends to infinity.
Argue that also on energy-shells the system is not ergodic.
Calculate the density distribution at equilibrium for given angular momentum L under the assumption that the system is ergodic (Hint: Use exercise 1).

Exercise 4: (Recurrence)
(a) Let $X=\mathbb{R}^{2}$ and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T(x, y)=$ $(x+y, y)$. Show that Poincare-recurrence does not hold for this system.
(b) Let $X=\mathbb{T}^{2}$ and let $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the linear transformation given by $T(x, y)=$ $(x+y \bmod 1, y)$. Here $T=[0,1]$. Show that all! points in any rectangle of the form $[a, b] \otimes[c, d]$ are infinitely recurrent. Hint: consider rational and irrational velocities separately.

