Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl Manuela Feistl

Sheet 11

Exercise 1: (Ergodicity)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $T : \Omega \to \Omega$ an ergodic measure-preserving transformation. Show that every map which is invariant under T is almost surely constant.

Exercise 2: (Ergodicity)

- a) Let X = [0, 1) be the interval with endpoints identified, λ the 1-dimensional Lebesgue measure and $R_{\alpha} : x \mapsto x + \alpha \mod 1$ be a rational rotation by $\alpha = \frac{p}{q} \in \mathbb{Q}$. Show that R_{α} is not ergodic with respect to λ by showing that there exists an invariant function $f : X \to R$ for R_{α} which is not constant λ -almost everywhere. Hint: Try to use some trigonometric function.
- b) Let $\underline{\alpha} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$ and $R_{\underline{\alpha}} : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ be the translation on the torus given by $R_{\underline{\alpha}}(x_1, x_2) = (x_1 + \alpha_1 \mod 1, x_2 + \alpha_2 \mod 1)$. Show that if there exists $\underline{n} = (n_1, n_2) \in \mathbb{Z}^2$ such that $\underline{n} = (0, 0)$ and $\langle \underline{n}, \underline{\alpha} \rangle \in \mathbb{Z}$, then $R_{\underline{\alpha}}$ is not ergodic. Hint: Look for a non-constant invariant trigonometric function $f : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{C}$. You can then use it to find a real-valued non-constant invariant function.

Exercise 3: (Probability measure)

Let (Ω, \mathcal{A}) be a measurable space and $T : \Omega \to \Omega$ a transformation. Show the following:

a) If $\mathbb{P}_1, \mathbb{P}_2$ are probability measures on (Ω, \mathcal{A}) , then any linear combination $\lambda \mathbb{P}_1 + (1 - \lambda)\mathbb{P}_2$ is also a probability measure $\forall \lambda \in [0, 1]$.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability measure preserved by T and $A \in \mathcal{A}$ with $\mathbb{P}(A) > 0$.

- b) $\mathbb{P}_1(B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ and $\mathbb{P}_2(B) := \frac{\mathbb{P}(A^c \cap B)}{\mathbb{P}(A^c)}$ are defining two measures. Are they also a probability measure?
- c) If A is invariant under T (i.e. $T^{-1}(A) = A$), then $\mathbb{P}_1, \mathbb{P}_2$ are invariant (i.e. measurepreserving) under T.

Exercise 4: (Vlasov equaiton) Consider the following particle system

$$\dot{x}_i = v_i$$
$$\dot{v}_i = F(x_i) + \frac{1}{N} \sum_{j \neq i} G(x_i - x_j)$$

Show that the empirical density

$$f(x, v, t) = \frac{1}{N} \sum_{i} \delta(x - x_i) \delta(v - v_i)$$

is a weak solution of the Vlasov equation

$$\partial_t f + v \cdot \nabla_x f + F(x) \cdot \nabla_v f + (G * \tilde{f}) \cdot \nabla_v f = 0,$$

where $\tilde{f}(x,t) = \int f dv$ and $G * \tilde{f} = G(x-y)\tilde{f}(y)dy$. Consider therefore

$$\sum_{j \neq i} G(x_i - x_j) = \int G(x_i - y) \sum \delta(y - x_j) dx.$$