Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl
Manuela Feistl

Sheet 11

Exercise 1: (Ergodicity)
Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $T: \Omega \rightarrow \Omega$ an ergodic measure-preserving transformation. Show that every map which is invariant under T is almost surely constant.

Exercise 2: (Ergodicity)

a) Let $X=[0,1)$ be the interval with endpoints identified, λ the 1-dimensional Lebesgue measure and $R_{\alpha}: x \mapsto x+\alpha \bmod 1$ be a rational rotation by $\alpha=\frac{p}{q} \in \mathbb{Q}$. Show that R_{α} is not ergodic with respect to λ by showing that there exists an invariant function $f: X \rightarrow R$ for R_{α} which is not constant λ-almost everywhere.
Hint: Try to use some trigonometric function.
b) Let $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}$ and $R_{\underline{\alpha}}: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the translation on the torus given by $R_{\alpha}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha_{1} \bmod 1, x_{2}+\alpha_{2} \bmod 1\right)$. Show that if there exists $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ such that $\underline{n}=(0,0)$ and $\langle\underline{n}, \underline{\alpha}\rangle \in \mathbb{Z}$, then $R_{\underline{\alpha}}$ is not ergodic.
Hint: Look for a non-constant invariant trigonometric function $f: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{C}$. You can then use it to find a real-valued non-constant invariant function.

Exercise 3: (Probability measure)
Let (Ω, \mathcal{A}) be a measurable space and $T: \Omega \rightarrow \Omega$ a transformation. Show the following:
a) If $\mathbb{P}_{1}, \mathbb{P}_{2}$ are probability measures on (Ω, \mathcal{A}), then any linear combination $\lambda \mathbb{P}_{1}+(1-$ $\lambda) \mathbb{P}_{2}$ is also a probability measure $\forall \lambda \in[0,1]$.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability measure preserved by T and $A \in \mathcal{A}$ with $\mathbb{P}(A)>0$.
b) $\mathbb{P}_{1}(B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ and $\mathbb{P}_{2}(B):=\frac{\mathbb{P}\left(A^{c} \cap B\right)}{\mathbb{P}\left(A^{c}\right)}$ are defining two measures. Are they also a probability measure?
c) If A is invariant under T (i.e. $T^{-1}(A)=A$), then $\mathbb{P}_{1}, \mathbb{P}_{2}$ are invariant (i.e. measurepreserving) under T.

Exercise 4: (Vlasov equaiton)
Consider the following particle system

$$
\begin{aligned}
\dot{x}_{i} & =v_{i} \\
\dot{v}_{i} & =F\left(x_{i}\right)+\frac{1}{N} \sum_{j \neq i} G\left(x_{i}-x_{j}\right)
\end{aligned}
$$

Show that the empirical density

$$
f(x, v, t)=\frac{1}{N} \sum_{i} \delta\left(x-x_{i}\right) \delta\left(v-v_{i}\right)
$$

is a weak solution of the Vlasov equation

$$
\partial_{t} f+v \cdot \nabla_{x} f+F(x) \cdot \nabla_{v} f+(G * \tilde{f}) \cdot \nabla_{v} f=0,
$$

where $\tilde{f}(x, t)=\int f d v$ and $G * \tilde{f}=G(x-y) \tilde{f}(y) d y$. Consider therefore

$$
\sum_{j \neq i} G\left(x_{i}-x_{j}\right)=\int G\left(x_{i}-y\right) \sum \delta\left(y-x_{j}\right) d x
$$

