Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl
Manuela Feistl

Sheet 2

Exercise 1: (Kolmogoroff's Axioms) Let Ω be a finite set, $P: \mathfrak{P}(\Omega) \mapsto \mathbb{R}$ a probability measure and $A, B \in \mathfrak{P}(\Omega)$. Prove that $\forall A, B \in \mathfrak{P}(\Omega)$
(a) $P(A) \leq 1$
(b) $P\left(A^{c}\right)=1-P(A)$
(c) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Clarify with each equation which of Kolmogoroff's axiom is used!

Exercise 2: (Independence) On the Laplace space $\Omega=\{\omega=(i, j) \mid i, j \in\{1,2,3\}\}$ (e.g. throwing a dice with only three sides) consider the following two random variables:

$$
X: \Omega \rightarrow\{0,1\} \text { with } \begin{cases}X(i, j)=0 & \text { if }|i-j| \geq 1 \\ X(i, j)=1 & \text { else }\end{cases}
$$

and

$$
Y: \Omega \rightarrow\{0,1\} \text { with } \begin{cases}Y(i, j)=0 & \text { if } j=3 \\ Y(i, j)=1 & \text { else }\end{cases}
$$

Show that the random variables X and Y are stochastically independent. The random variables X, Y are called stochastically independent if for all possible combinations $x, y \in$ $\{0,1\}$ it holds that:

$$
P(\{\omega \mid X(\omega)=x\} \cap\{\omega \mid Y(\omega)=y\})=P(\{\omega \mid X(\omega)=x\}) \cdot P(\{\omega \mid Y(\omega)=y\})
$$

Exercise 3: Prove that the efficiency of the carnot process for given temperature T_{C} for the cold reservoir and T_{H} for the hot reservoir is given by $1-\frac{T_{C}}{T_{H}}$.

Exercise 4: Prove the validity of Louiville's Theorem in the presence of an interaction with an external magnetic field, i.e. a force of the form $F=\sum_{j=1} B\left(x_{j}\right) \times p_{j}$ for an arbitrary $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.

