Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl
Manuela Feistl

Sheet 3

Exercise 1: (Expectation value) Let u be a discrete random variable that can take positive values u_{i} with probability p_{i} for $i \in N \subset \mathbb{N}$ and $S:=\sum_{i, j} p_{i} p_{j} \frac{\left(u_{i}-u_{j}\right)^{2}}{u_{i} u_{j}}$. Show:
(a) $S=2\left(\mathbb{E}(u) \cdot \mathbb{E}\left(\frac{1}{u}\right)-1\right)$
(b) $\mathbb{E}\left(\frac{1}{u}\right) \geq \frac{1}{\mathbb{E}(u)}$
(c) In which case does the equality of the equation in (b) hold?

Exercise 2: (Sigma Algebra) Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be σ-algebras over the same set of Ω.
(a) Give an example where the union $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is not a σ-algebra over Ω.
(b) Let $\left(\sigma_{i}\right)_{i \in I}$ be a indexed set of σ-algebras over Ω. Prove that the intersection of σ-algebras $\cap_{i \in I} \sigma_{i}$ is a σ-algebra.

Exercise 3: (Borel-Cantelli) Let $\left\{X_{n} \mid n \in \mathbb{N}\right\}$ be a family of Bernoulli random variables with $P\left(X_{n}=1\right)=p_{n}$ and $P\left(X_{n}=0\right)=1-p_{n}$ for $\forall n \in \mathbb{N}$. How many random variables X_{n} have the value 1 or 0 if
(a) $p_{n}=\frac{1}{n^{2}}$,
(b) $p_{n}=\frac{1}{n}$ and the family of random variables is independent?

Exercise 4: (Discrete convolution) Let X, Y be independent \mathbb{Z}-valued random variables, $\left(P_{X} * P_{Y}\right)(\{n\}):=\sum_{m=-\infty}^{\infty} P_{X}(\{m\}) P_{Y}(\{n-m\})$ be the convolution of the probability measures $P_{X}(\{n\}):=P(\{X=n\})$ respectively. $P_{Y}(\{n\}):=P(\{Y=n\})$. Show:
(a) $P_{X+Y}=P_{X} * P_{Y}$
(b) Let X, Y be independent and Poisson distributed with parameters μ_{X}, μ_{Y}. Calculate and interpret P_{X+Y}.

