Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl Manuela Feistl

Sheet 3

Exercise 1: (Expectation value) Let u be a discrete random variable that can take positive values u_i with probability p_i for $i \in N \subset \mathbb{N}$ and $S := \sum_{i,j} p_i p_j \frac{(u_i - u_j)^2}{u_i u_j}$. Show:

- (a) $S = 2\left(\mathbb{E}(u) \cdot \mathbb{E}\left(\frac{1}{u}\right) 1\right)$
- (b) $\mathbb{E}\left(\frac{1}{u}\right) \ge \frac{1}{\mathbb{E}(u)}$
- (c) In which case does the equality of the equation in (b) hold?

Exercise 2: (Sigma Algebra) Let A_1, A_2 be σ -algebras over the same set of Ω .

- (a) Give an example where the union $A_1 \cup A_2$ is not a σ -algebra over Ω .
- (b) Let $(\sigma_i)_{i\in I}$ be a indexed set of σ -algebras over Ω . Prove that the intersection of σ -algebras $\cap_{i\in I}\sigma_i$ is a σ -algebra.

Exercise 3: (Borel-Cantelli) Let $\{X_n|n\in\mathbb{N}\}$ be a family of Bernoulli random variables with $P(X_n=1)=p_n$ and $P(X_n=0)=1-p_n$ for $\forall n\in\mathbb{N}$. How many random variables X_n have the value 1 or 0 if

- (a) $p_n = \frac{1}{n^2}$,
- (b) $p_n = \frac{1}{n}$ and the family of random variables is independent?

Exercise 4: (Discrete convolution) Let X, Y be independent \mathbb{Z} -valued random variables, $(P_X * P_Y)(\{n\}) := \sum_{m=-\infty}^{\infty} P_X(\{m\}) P_Y(\{n-m\})$ be the convolution of the probability measures $P_X(\{n\}) := P(\{X=n\})$ respectively. $P_Y(\{n\}) := P(\{Y=n\})$. Show:

- (a) $P_{X+Y} = P_X * P_Y$
- (b) Let X, Y be independent and Poisson distributed with parameters μ_X, μ_Y . Calculate and interpret P_{X+Y} .