Exercises: Mathematical Statistical Physics

Prof. Dr. P. Pickl Manuela Feistl

Sheet 4

Exercise 1: (Sigma Algebra) Show that all open subsets $\mathcal{O} \subseteq \mathbb{R}$ are elements of the Borell Sigma Algebra $\mathcal{B}(\mathbb{R})$.

Exercise 2: (Law of large numbers) Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(X_k)_{k \in \mathbb{N}}$ a sequence of discrete and independent random variables. Furthermore let $\mathbb{E}(X_k^6)$ be finite for each $k \in \mathbb{N}$ and X_k are uniformly distributed with $E(X_k) = 0$. The mean of the first n terms of the sequence are given by $M_n = \frac{1}{n} \sum_{k=1}^n X_k$.

a) Prove that

$$\mathbb{E}(|X_k|^i) \le \mathbb{E}(X_k^6) + 1 \text{ for all } i \in \{1, 2, 3, 4, 5\}.$$

b) Prove that there exist is a constant $c \in \mathbb{R}$, such that

$$\mathbb{P}(|M_k| > \frac{1}{l}) < \frac{c \cdot l^6}{k^3} [\mathbb{E}(X_1^6) + \mathbb{E}(X_1^6)^2 + 1].$$

Exercise 3: (Almost Sure Convergence) For the random experiment of tossing a fair coin once assume a sequence of random variables $\{X_n | n \in \mathbb{N}\}$ on the sample space $\Omega = \{\text{head }, \text{tail}\}$ are defined as $X_n(h) = \frac{n}{n+1}$ and $X_n(t) = (-1)^n \ \forall n \in \mathbb{N}.$

- (a) Determine whether the resulting real sequence converges or not.
- (b) Calculate $P(\{\omega \in \Omega | \lim_{n \to \infty} X_n(\omega) = 1\})$
- (c) Does X_n converge to 1 almost surely?