SS 2024 17.04.2024 Blatt 01

Übungen zu "Algebraische Topologie II"

Aufgabe 01. Seien C und C' zwei Kettenkomplexe. Zeigen Sie, dass $H(C) \oplus H(C')$ und $H(C \oplus C')$ (als graduierte abelsche Gruppen) natürlich isomorph sind,

$$H(C \oplus C') \cong H(C) \oplus H(C').$$

Aufgabe 02. Sei

$$0 \to C' \to C \to C'' \to 0$$

eine kurze exakte Sequenz von Kettenkomplexen. Zeigen Sie, dass die zugehörige lange Sequenz von abelschen Gruppen

$$\dots \to H_k(C') \to H_k(C) \to H_k(C'') \to H_{k-1}(C') \to \dots$$

exakt ist.

Aufgabe 03. Zeigen Sie, dass der singuläre Kettenkomplexfunktor $S: \mathbf{Top} \to \mathbf{KK}$, und damit auch die Komposition, der *Homologiefunktor auf topologischen Räumen*, $H \circ S: \mathbf{Top} \to \mathbf{gAb}$ Summen respektiert. Wie ist es mit unendlichen Summen?

Aufgabe 04. Seien Δ_1 und Δ_2 die Standard-Simplexe in den Dimensionen 1 und 2 sowie X ein topologischer Raum. Für einen singulären 1-Simplex in X, $\alpha: \Delta_1 \to X$, bezeichnen wir mit $\alpha^-: \Delta_1 \to X$ den rückwärts durchlaufenen singulären 1-Simplex, d.i.: $\alpha^-(\lambda_0, \lambda_1) = \alpha(\lambda_1, \lambda_0)$, für alle $(\lambda_0, \lambda_1) \in \Delta_1$. Zeigen Sie, dass die Differenz $\alpha^- - \alpha$ in $S_1(X)$ ein singulärer Rand ist, also $\alpha^- - \alpha = \partial(c)$, für eine singuläre 2-Kette c in X. (Hinweis: Betrachten Sie den singulären 2-Simplex $\sigma: \Delta_2 \to X$, welcher durch $\sigma(\lambda_0, \lambda_1, \lambda_2) = \alpha(\lambda_2, \lambda_0 + \lambda_1)$ gegeben ist.)

Abgabe: Dienstag, den 23.04.2024 bis 18 Uhr via "urm"