Stochastik

Prof. Dr. P. Pickl

Blatt 3

Aufgabe 1: Beweisen Sie dass auf jedem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ die beiden folgenden Formeln gelten:

(a) (Satz von der totalen Wahrscheinlichkeit) Falls für eine abzählbare Indexmenge J $(B_j)_{j\in J}$ eine Partition von Ω darstellt, d.h. die B_j sind paarweise disjunkt und $\bigcup_{j\in J} B_j = \Omega$, so gilt für jedes $A \in \mathcal{A}$:

$$\mathbb{P}(A) = \sum_{j \in J} \mathbb{P}_{B_j}(A) \mathbb{P}(B_j)$$

(b) (Satz von Bayes) Für zwei Ereignisse A, B, jeweils mit von Null ungleicher Wahrscheinlichkeit gilt:

$$\mathbb{P}_{B}(A) = \frac{\mathbb{P}_{A}(B)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Aufgabe 2: Zeigen Sie: Die Borel'sche σ -Algebra ist die aus allen abgeschlossenen Intervallen erzeugte σ -Algebra.

Aufgabe 3: Zeigen Sie, dass der Schnitt zweier Dynkin-Systeme wieder ein Dynkin-System ergibt.

Aufgabe 4: Sei $A \subset \mathcal{P}(\Omega)$ sowie $B \subset \Omega$. $B \cap A$ nennt man die Spur von A in B. Dabei ist $B \cap A = \{B \cap A : A \in A\}$.

- a) Zeigen Sie, dass $B \cap A$ eine σ -Algebra bezüglich B ist, falls A eine σ -Algebra bezüglich Ω ist.
- b) Sei $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{1, 2, 3, 4, 5, 6, 7\}$ und \mathcal{A} die Menge aller Teilmengen von Ω , deren Anzahl an Elementen 0, 4 oder 8 beträgt. Zeigen Sie, dass \mathcal{A} ein Dynkin-System ist, $B \cap \mathcal{A}$ jedoch nicht. Ist \mathcal{A} eine σ -Algebra?

Bitte geben Sie das Übungsblatt jeweils zu zweit oder zu dritt bis spätestens 13.05.2024 um 14:00 über URM ab. Denken Sie daran, von allen zwei bzw. drei Personen die Namen auf dem Blatt anzugeben.