MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 3

Problem 12: Normalizing factor of the Gaussian in d dimensions (hand in, 20 points) Determine the normalizing factor \mathcal{N} in the expression

$$\rho(\boldsymbol{x}) = \mathscr{N} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T C^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

for the density of $\mathcal{N}^d(\boldsymbol{\mu}, C)$, the Gaussian distribution in \mathbb{R}^d with mean $\boldsymbol{\mu}$ and positive definite, symmetric covariance matrix C. Express \mathcal{N} in terms of det C. Use the answer for d = 1 without proof.

Problem 13: Speeds of molecules (hand in, 20 points)

(a) Determine the most probable value v_{max} of the speed v = |v| according to the Maxwellian distribution

$$\rho(\boldsymbol{v}) = \mathscr{N} \exp\left(-\frac{m|\boldsymbol{v}|^2}{2kT}\right),$$

with given m and T. (*Hint*: The distribution density ρ_v of v is not $\mathscr{N} \exp(-mv^2/2kT)$. Why not?)

(b) Is v_{max} greater or less than $\sqrt{\mathbb{E}(\boldsymbol{v}^2)}$?

(c) Determine v_{max} for nitrogen gas (N_2) , the main constituent of air with $m = 4.6 \cdot 10^{-26}$ kg, at an absolute temperature of T = 300 Kelvin.

Problem 14: *Belt theorem* (hand in, 30 points)

Show that for every $\varepsilon, \delta \in (0, 1)$ there is $d_0 \in \mathbb{N}$ such that, for all $d > d_0$, a fraction of at least $1 - \varepsilon$ of the surface area of the unit sphere in \mathbb{R}^d lies within a belt of width 2δ around the equator, $\{ \boldsymbol{x} \in \mathbb{R}^d : -\delta < x_1 < \delta, |\boldsymbol{x}| = 1 \}$. ("In high dimension, most points on the sphere are near the equator.")

Instructions: Let $\mathbf{X} = (X_1, \ldots, X_d)$ be a random, uniformly distributed point on \mathbb{S}_1^{d-1} . Use symmetry to compute the expectation and variance of X_1 . Then use the Chebyshev inequality to bound $\mathbb{P}(-\delta < X_1 < \delta)$.

Problem 15: Marginal of the uniform distribution on the sphere (hand in, 30 points) Let u_R^{d-1} be the uniform probability measure on the sphere \mathbb{S}_R^{d-1} of radius R > 0 in \mathbb{R}^d , and let $(X_1, \ldots, X_d) \sim u_R^{d-1}$. Show that the marginal distribution of X_1, \ldots, X_k , k < d, has density given by

$$\rho_{k,d,R}(\boldsymbol{x}) = \frac{A_{d-k}}{A_d R^{d-2}} \, \mathbf{1}_{\boldsymbol{x}^2 \le R^2} \left(R^2 - \boldsymbol{x}^2 \right)^{(d-k)/2 - 1} \tag{1}$$

with A_d the area of \mathbb{S}_1^{d-1} .

Instructions: The marginal $f_k(x_1, \ldots, x_k)$ can also be defined for a non-normalized density function $f(x_1, \ldots, x_d)$,

$$f_k(x_1,\ldots,x_k) = \int dx_{k+1}\cdots dx_d f(x_1,\ldots,x_d).$$
(2)

Let \mathbb{B}_r^d denote the ball in \mathbb{R}^d of radius r around the origin. Use without proof that for $f = 1_{\mathbb{B}_{R+\Delta R}^d} - 1_{\mathbb{B}_R^d}$,

$$A_d R^{d-1} \rho_{k,d,R}(\boldsymbol{x}) = \lim_{\Delta R \to 0} f_k(\boldsymbol{x}) / \Delta R.$$
(3)

Conclude that, for $x^2 < R^2$,

$$\rho_{k,d,R}(\boldsymbol{x}) = \frac{1}{A_d R^{d-1}} \frac{\partial}{\partial R} \operatorname{vol}_{d-k} \left\{ \boldsymbol{y} \in \mathbb{R}^{d-k} : \boldsymbol{x}^2 + \boldsymbol{y}^2 \le R^2 \right\}.$$
(4)

Hand in: By 23:59 on Monday May 5, 2025 via urm.math.uni-tuebingen.de