MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 6

Problem 27: Refrigerator (don't hand in)

Use the second law of thermodynamics to show that a refrigerator necessarily consumes energy rather than generating energy. (We might have thought that the energy removed from the content of the refrigerator is available afterwards.)

Instructions. Let $T_{\rm in}$ be the temperature inside the refrigerator, $T_{\rm out}$ the one outside, $Q_{\rm in}$ the heat energy inside, $Q_{\rm out}$ the one outside, and δW the usable energy provided by the refrigerator (negative if it consumes energy) while it adds the energy $\delta Q_{\rm in} < 0$ to the content and $\delta Q_{\rm out}$ to the outside. Use the Clausius relation $\delta S_i = \delta Q_i/T_i$, $i = {\rm in}$, out to show that $\delta W < 0$.

Problem 28: Entropy in thermal equilibrium (hand in, 25 points)

Compute the entropy S(E, V, N) of the thermal equilibrium state of an ideal mono-atomic gas from Boltzmann's formula $S(eq) = k \log \Omega(E)$.

Instructions. We have already found the relations

$$\operatorname{vol}\Gamma_{\leq E} = \frac{1}{N!} V^N V_{3N} (2mE)^{3N/2} \tag{1}$$

$$V_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)} \tag{2}$$

$$\Omega(E) = \frac{d}{dE} \operatorname{vol} \Gamma_{\leq E} \,. \tag{3}$$

Use Stirling's formula

$$\Gamma(x+1) = \sqrt{2\pi x} e^{-x} x^x (1+o(1)) \quad \text{as } x \to \infty$$
(4)

and $n! = \Gamma(n+1)$. Set E = Ne and V = Nv with constants e, v, sort terms by orders $O(N \log N), O(N), O(\log N), \ldots$, and give the leading order terms as the answer.

Problem 29: Concave function (hand in, 20 points) Verify that the function

$$S(E, V, N) = kN \log \frac{V}{Nv_0} + \frac{3}{2}kN \log \frac{E}{Ne_0}$$

is concave on $(0, \infty)^3$. Use without proof that a C^2 function is concave if and only if its Hessian is everywhere negative semi-definite. (*Hint*: The matrix is singular, and on a certain 2d subspace it is negative definite.) **Problem 30:** Ergodicity on a finite set (hand in, 35 points)

Let Ω be a finite set, $\#\Omega = n$. A dynamical system in discrete time means a bijection $T: \Omega \to \Omega$.

(a) Show that T preserves the uniform measure $\mathbb{P}(A) = \#A/n$.

- (b) Show that \mathbb{P} is the only probability measure preserved by every bijection.
- (c) How many dynamical systems on Ω exist?
- (d) What should it mean here for T to be ergodic?
- (e) What are the ergodic components of a non-ergodic T?
- (f) How many dynamical systems on Ω are ergodic?
- (g) Determine the probability that a randomly chosen dynamical system on Ω is ergodic.
- (h) The recurrence time of $\omega \in \Omega$ for T is defined as the smallest $t \in \mathbb{N}$ with $T^t \omega = \omega$. Determine the recurrence time for ergodic T.
- (i) Determine the average recurrence time for random T (ergodic or not) and random ω .

Problem 31: *Gibbs entropy* (hand in, 20 points)

The Gibbs entropy of a probability density function ρ on phase space $\Gamma = \mathbb{R}^d$ is defined by

$$S_{\text{Gibbs}}(\rho) = -k \int_{\Gamma} dx \,\rho(x) \,\log\rho(x) \tag{5}$$

with the convention $0 \log 0 := 0$. Suppose $M : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism with Jacobian determinant $|\det DM(x)| = 1$ at all $x \in \mathbb{R}^d$ (so M preserves volumes), and suppose that the point X_0 in \mathbb{R}^d is chosen randomly with (smooth) probability density $\rho_0 : \mathbb{R}^d \to [0, \infty)$. Use the transformation formula for integrals to show that

(a) the random point $Y = M(X_0)$ has density $\rho_1(y) = \rho_0(M^{-1}(y))$.

(b) $S_{\text{Gibbs}}(\rho_1) = S_{\text{Gibbs}}(\rho_0).$

Remark. As a consequence, for a Hamiltonian system on \mathbb{R}^d such that for each $t \in \mathbb{R}$ the flow map T^t is a diffeomorphism $\mathbb{R}^d \to \mathbb{R}^d$, if ρ_t is the density of $X_t = T^t(X_0)$ then, since T^t has Jacobian determinant 1 (Liouville's theorem), the Gibbs entropy never changes with time.

Hand in: By 23:59 on Monday, May 26, 2025 via urm.math.uni-tuebingen.de