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Math Stat Phys: Some In-Class Problems

Problem 1: Boltzmann equation with external potential
In an external potential V1, the Boltzmann equation reads(

∂

∂t
+ v · ∇q −

1

m
∇V1(q) · ∇v

)
f(q,v, t) = Q(q,v, t) (1)

with the same collision term as given in the lectures,

Q(q,v, t) = λ

∫
R3

d3v∗

∫
S2
d2ω 1ω·(v−v∗)>0 ω · (v − v∗)×[

f(q,v′, t) f(q,v′
∗, t)− f(q,v, t) f(q,v∗, t)

]
, (2)

and boundary condition

f(q,v, t) = f
(
q,v − 2[v · n]n, t

)
(3)

for q ∈ ∂Λ and n = n(q) the outward unit normal vector. Show that the Maxwell-
Boltzmann distribution is a stationary solution.

Problem 2: Grand-canonical distribution as a marginal
We consider an ideal gas in a container Λ ⊂ R3 subdivided into a region ΛA and its
complement ΛB = Λ \ ΛA. There are no walls between ΛA and ΛB, so particles can pass
freely. We write A := ΛA × R3 and B := ΛB × R3 for the corresponding subsets of Γ1;
the total phase space is Γ = NΓ1; the phase space of system A is now a phase space of a
variable number of particles, ΓA = ∪N

n=0
nA. For x ∈ Γ let xA = x∩A and xB = x∩B, so

x = xA ∪ xB; correspondingly, Γ can be regarded as a subset of ΓA × ΓB. We have that
H(x1, . . . , xN) =

∑N
j=1H1(xj) and HA(x1, . . . , xn) =

∑n
j=1 H1(xj) for n = 0 . . . N . For

simplicity, we start from a canonical (rather than micro-canonical) distribution ρcan on
Γ, i.e., (ideal gas): N points in Γ1 are chosen i.i.d. according to the Maxwell-Boltzmann
distribution ρ1 = Z−1

1 e−βH1 . The marginal ρA of ρcan on ΓA ranges over different particle
numbers; so does Z−1

A e−βHA , but it is not the same distribution! Show that instead in the
limit Λ → ∞, N → ∞, ΛA fixed, H1 fixed, N

∫
A
ρ1 → c > 0 (with suitable constant c),

ρA(x1, . . . , xn) =
1

Z
exp
[
−β(HA(x1 . . . xn)− µn)

]
(4)

with suitable constant µ ∈ R. This is the grand-canonical distribution. (If we write phase
points in ΓA as ordered, then a further factor 1/n! appears in (4).)



Problem 3: Stirling formula via Laplace’s method

The Stirling formula says that
n! ≈ nne−n

√
2πn. (5)

We will derive it non-rigorously by means of Laplace’s method: if a (sufficiently smooth)
function f(x) has a global maximum at x = xm and only there, then for n ≫ 1,∫

R
dx enf(x) ≈ enf(xm)

√
2π

n|f ′′(xm)|
. (6)

In order to derive (5), follow these steps:

(a) From earlier assignments we know that n! can be expressed by the Gamma function,

n! = Γ(n+ 1) =

∫ ∞

0

dt tn+1e−t. (7)

Find a substitution to bring the integrand in the form enf(x).

(b) The integral ∫
R
dx enf(x) (8)

is dominated by those x that are in the neighbourhood of the global maximum xm.
Perform a Taylor expansion of f(x) around xm up to second order (neglecting terms of
third order and beyond) to show that∫

R
dx enf(x) ≈ enf(xm)

∫
R
dx e−

n
2
|f ′′(xm)|(x−xm)2 . (9)

(c) Evaluate the integral

enf(xm)

∫
R
dx e−

n
2
|f ′′(xm)|(x−xm)2 (10)

and deduce (5).

Problem 4: Dominance of Thermal Equilibrium
In the lecture, we discussed the fact that the thermal equilibrium macro set Γeq is almost
as huge as the corresponding energy shell Γmc, a fact known as dominance of thermal
equilibrium. The goal of this exercise is to obtain the estimate1

vol Γeq

vol Γmc

≈ 1− exp(−10−15N). (11)

To this end, we focus on positions only, i.e., we consider configuration space ΛN , where
Λ ⊂ R3 has finite volume. Divide Λ into m cells Λj of equal volume. We use the

1following the lecture notes, p.66-67.
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uniform distribution over ΛN and take the macro variables to be Mj = [Nj/N∆Mj]∆Mj,
j = 1, . . . ,m, where Nj is the number of particles in Λj, meaning that Mj is the rounded
relative occupation number of Λj.

(a) Under these assumptions, argue that the equilibrium value of Mj is ν
eq
j = 1/m.

(b) Explain that the distribution of Nj is binomial with parameters N and 1/m. 2

(c) Use the theorem of de Moivre-Laplace to see that approximately
Nj ∼ N (Nm−1, N(m− 1)m−2).

(d) A deviation of Mj from its equilibrium values requires that Nj deviates from 1/m by
more than N∆Mj, i.e., by more that

√
mN∆Mj standard deviations. Use the fact that

for Z ∼ N (0, 1) and for all z > 0

P(|Z| > z) ≤ e−z2/2 (12)

to show that the probability that any Mj deviates from its equilibrium value 1/m is given
by

P

(
∃j : Mj ̸= νeq

j

)
≤ mp0 (13)

where p0 = exp(−mN∆M2
j /2). Conclude that for ∆Mj = 10−12 and a reasonable choice

of m, (11) holds.

2Recall: the binomial distribution with parameters n and p is the distribution of the number X of
successes among n independent trials of a random experiment that succeeds with probability p. It has
expectation np and variance np(1− p).
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