MATH STAT PHYS: SOME IN-CLASS PROBLEMS

Problem 1: Boltzmann equation with external potential In an external potential V_1 , the Boltzmann equation reads

$$\left(\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \nabla_{\boldsymbol{q}} - \frac{1}{m} \nabla V_1(\boldsymbol{q}) \cdot \nabla_{\boldsymbol{v}}\right) f(\boldsymbol{q}, \boldsymbol{v}, t) = Q(\boldsymbol{q}, \boldsymbol{v}, t)$$
(1)

with the same collision term as given in the lectures,

$$Q(\boldsymbol{q}, \boldsymbol{v}, t) = \lambda \int_{\mathbb{R}^3} d^3 \boldsymbol{v}_* \int_{\mathbb{S}^2} d^2 \boldsymbol{\omega} \, \mathbf{1}_{\boldsymbol{\omega} \cdot (\boldsymbol{v} - \boldsymbol{v}_*) > 0} \, \boldsymbol{\omega} \cdot (\boldsymbol{v} - \boldsymbol{v}_*) \times \left[f(\boldsymbol{q}, \boldsymbol{v}', t) \, f(\boldsymbol{q}, \boldsymbol{v}'_*, t) - f(\boldsymbol{q}, \boldsymbol{v}, t) \, f(\boldsymbol{q}, \boldsymbol{v}_*, t) \right], \quad (2)$$

and boundary condition

$$f(\boldsymbol{q}, \boldsymbol{v}, t) = f(\boldsymbol{q}, \boldsymbol{v} - 2[\boldsymbol{v} \cdot \boldsymbol{n}]\boldsymbol{n}, t)$$
(3)

for $q \in \partial \Lambda$ and n = n(q) the outward unit normal vector. Show that the Maxwell-Boltzmann distribution is a stationary solution.

Problem 2: Grand-canonical distribution as a marginal

We consider an ideal gas in a container $\Lambda \subset \mathbb{R}^3$ subdivided into a region Λ_A and its complement $\Lambda_B = \Lambda \setminus \Lambda_A$. There are no walls between Λ_A and Λ_B , so particles can pass freely. We write $A := \Lambda_A \times \mathbb{R}^3$ and $B := \Lambda_B \times \mathbb{R}^3$ for the corresponding subsets of Γ_1 ; the total phase space is $\Gamma = {}^N \Gamma_1$; the phase space of system A is now a phase space of a variable number of particles, $\Gamma_A = \bigcup_{n=0}^N {}^n A$. For $x \in \Gamma$ let $x_A = x \cap A$ and $x_B = x \cap B$, so $x = x_A \cup x_B$; correspondingly, Γ can be regarded as a subset of $\Gamma_A \times \Gamma_B$. We have that $H(x_1, \ldots, x_N) = \sum_{j=1}^N H_1(x_j)$ and $H_A(x_1, \ldots, x_n) = \sum_{j=1}^n H_1(x_j)$ for $n = 0 \ldots N$. For simplicity, we start from a canonical (rather than micro-canonical) distribution ρ_{can} on Γ , i.e., (ideal gas): N points in Γ_1 are chosen i.i.d. according to the Maxwell-Boltzmann distribution $\rho_1 = Z_1^{-1} e^{-\beta H_1}$. The marginal ρ_A of ρ_{can} on Γ_A ranges over different particle numbers; so does $Z_A^{-1} e^{-\beta H_A}$, but it is not the same distribution! Show that instead in the limit $\Lambda \to \infty$, $N \to \infty$, Λ_A fixed, H_1 fixed, $N \int_A \rho_1 \to c > 0$ (with suitable constant c),

$$\rho_A(x_1,\ldots,x_n) = \frac{1}{Z} \exp\left[-\beta(H_A(x_1\ldots x_n) - \mu n)\right]$$
(4)

with suitable constant $\mu \in \mathbb{R}$. This is the grand-canonical distribution. (If we write phase points in Γ_A as ordered, then a further factor 1/n! appears in (4).)

Problem 3: Stirling formula via Laplace's method

The Stirling formula says that

$$n! \approx n^n e^{-n} \sqrt{2\pi n}.$$
(5)

We will derive it non-rigorously by means of Laplace's method: if a (sufficiently smooth) function f(x) has a global maximum at $x = x_m$ and only there, then for $n \gg 1$,

$$\int_{\mathbb{R}} \mathrm{d}x \, e^{nf(x)} \approx e^{nf(x_m)} \sqrt{\frac{2\pi}{n|f''(x_m)|}}.$$
(6)

In order to derive (5), follow these steps:

(a) From earlier assignments we know that n! can be expressed by the Gamma function,

$$n! = \Gamma(n+1) = \int_0^\infty \mathrm{d}t \, t^{n+1} e^{-t}.$$
(7)

Find a substitution to bring the integrand in the form $e^{nf(x)}$.

(b) The integral

$$\int_{\mathbb{R}} \mathrm{d}x \, e^{nf(x)} \tag{8}$$

is dominated by those x that are in the neighbourhood of the global maximum x_m . Perform a Taylor expansion of f(x) around x_m up to second order (neglecting terms of third order and beyond) to show that

$$\int_{\mathbb{R}} \mathrm{d}x \, e^{nf(x)} \approx e^{nf(x_m)} \int_{\mathbb{R}} \mathrm{d}x \, e^{-\frac{n}{2}|f''(x_m)|(x-x_m)^2} \,. \tag{9}$$

(c) Evaluate the integral

$$e^{nf(x_m)} \int_{\mathbb{R}} \mathrm{d}x \, e^{-\frac{n}{2} |f''(x_m)|(x-x_m)^2}$$
 (10)

and deduce (5).

Problem 4: Dominance of Thermal Equilibrium

In the lecture, we discussed the fact that the thermal equilibrium macro set Γ_{eq} is almost as huge as the corresponding energy shell Γ_{mc} , a fact known as *dominance of thermal* equilibrium. The goal of this exercise is to obtain the estimate¹

$$\frac{\operatorname{vol}\Gamma_{\mathrm{eq}}}{\operatorname{vol}\Gamma_{\mathrm{mc}}} \approx 1 - \exp(-10^{-15}N).$$
(11)

To this end, we focus on positions only, i.e., we consider configuration space Λ^N , where $\Lambda \subset \mathbb{R}^3$ has finite volume. Divide Λ into m cells Λ_j of equal volume. We use the

¹following the lecture notes, p.66-67.

uniform distribution over Λ^N and take the macro variables to be $M_j = [N_j/N\Delta M_j]\Delta M_j$, $j = 1, \ldots, m$, where N_j is the number of particles in Λ_j , meaning that M_j is the rounded relative occupation number of Λ_j .

(a) Under these assumptions, argue that the equilibrium value of M_j is $\nu_j^{\text{eq}} = 1/m$.

(b) Explain that the distribution of N_j is binomial with parameters N and 1/m.²

(c) Use the theorem of de Moivre-Laplace to see that approximately $N_j \sim \mathcal{N}(Nm^{-1}, N(m-1)m^{-2}).$

(d) A deviation of M_j from its equilibrium values requires that N_j deviates from 1/m by more than $N\Delta M_j$, i.e., by more that $\sqrt{mN}\Delta M_j$ standard deviations. Use the fact that for $Z \sim \mathcal{N}(0, 1)$ and for all z > 0

$$\mathbb{P}(|Z| > z) \le e^{-z^2/2} \tag{12}$$

to show that the probability that any M_j deviates from its equilibrium value 1/m is given by

$$\mathbb{P}\left(\exists j: M_j \neq \nu_j^{\text{eq}}\right) \le mp_0 \tag{13}$$

where $p_0 = \exp(-mN\Delta M_j^2/2)$. Conclude that for $\Delta M_j = 10^{-12}$ and a reasonable choice of m, (11) holds.

²Recall: the binomial distribution with parameters n and p is the distribution of the number X of successes among n independent trials of a random experiment that succeeds with probability p. It has expectation np and variance np(1-p).