MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 9

Problem 38: Moments of a random wave function (hand in, 50 points)

Let S be the unit sphere in the Hilbert space \mathbb{C}^d , u the uniform probability distribution on S, and $\Psi = (\Psi_1, \ldots, \Psi_d) \sim u$. Compute all moments of Ψ of up to fourth order. That is, show for all $k, \ell, m, n \in \{1, \ldots, d\}$ that

- (a) $\mathbb{E}\Psi_k = 0$ (*Hint*: symmetry)
- (b) $\mathbb{E}\Psi_k^*\Psi_\ell = 0 = \mathbb{E}\Psi_k\Psi_\ell$ for $k \neq \ell$
- (c) $\mathbb{E}|\Psi_k|^2 = 1/d$
- (d) $\mathbb{E}\Psi_k^2 = 0$
- (e) $\mathbb{E}\Psi_k\Psi_\ell\Psi_m = 0$, and likewise if any of the factors is conjugated
- (f) $\mathbb{E}\Psi_k\Psi_\ell\Psi_m\Psi_n = 0$ if an index occurs only once, and likewise for conjugated factors
- (g) $\mathbb{E}\Psi_k^4 = 0 = \mathbb{E}\Psi_k^{*4} = \mathbb{E}\Psi_k^*\Psi_k^3 = \mathbb{E}\Psi_k^{*3}\Psi_k$
- (h) $\mathbb{E}|\Psi_k|^4 = \frac{2}{d(d+1)}$ (the main problem!)

(Instructions: Regard \mathbb{C}^d as \mathbb{R}^{2d} , $\Psi = (x_1, \dots, x_{2d}) = \boldsymbol{x}$, $I_1 = \int_{\mathbb{S}} u(d\boldsymbol{x}) x_1^4$,

$$I_2 = \int_{\mathbb{S}} u(d\boldsymbol{x}) x_1^2 x_2^2$$
. Integrating in spherical coordinates,¹

$$\int_{\mathbb{R}^{2d}} d\boldsymbol{x} \, x_1^2 \, x_2^2 \exp(-|\boldsymbol{x}|^2) = \int_0^\infty dr \, r^{2d-1} \, r^4 \, \exp(-r^2) \, I_2 \operatorname{area}(\mathbb{S}) \,. \tag{1}$$

Now the substitution $s = r^2$ helps. Use without proof that $\mathbb{E}[(X - \mu)^4] = 3\sigma^4$ for $X \sim \mathcal{N}(\mu, \sigma^2)$.)

(i)
$$\mathbb{E}|\Psi_k|^2 |\Psi_\ell|^2 = \frac{1}{d(d+1)}$$
 for $k \neq \ell$ (*Hint*: $\mathbb{E}[(\sum_k |\Psi_k|^2)^2] = 1$ (why?).)
(j) $\mathbb{E}\Psi_k^2 \Psi_\ell^2 = 0 = \mathbb{E}|\Psi_k|^2 \Psi_\ell^2 = \mathbb{E}\Psi_k^{*2} \Psi_\ell^2$ for $k \neq \ell$.

Problem 39: Variance and covariance of a random wave function (hand in, 25 points) (a) For Ψ as in Problem 38, conclude from the results of Problem 38 that

$$\operatorname{Var}(|\Psi_1|^2) = \frac{1}{d^2} \frac{d-1}{d+1}, \quad \operatorname{Cov}(|\Psi_1|^2, |\Psi_2|^2) = -\frac{1}{d^2(d+1)}.$$

(b) As we know, for large d, Ψ_1 is approximately $\mathcal{N}^2(\mathbf{0}, I/2d)$ distributed. For comparison, let $\mathbf{G} = (G_1, \ldots, G_d) = (X_1, \ldots, X_{2d})$ be a Gaussian random vector in $\mathbb{C}^d = \mathbb{R}^{2d}$, i.e., so that the X_i (the real and imaginary parts of the G_k) are i.i.d. with $X_i \sim \mathcal{N}(0, 1/2d)$. Determine $\operatorname{Var}(|G_1|^2)$ and $\operatorname{Cov}(|G_1|^2, |G_2|^2)$.

¹This trick was discovered by N. Ullah, Nuclear Physics 58: 65–71 (1964).

Problem 40: *Quantum particle in a box in 1d* (don't hand in)

(a) On the interval [0, L], consider the Hamiltonian operator $H\psi(x) = -\psi''(x)/2m$ with Dirichlet boundary conditions $\psi(0) = 0$, $\psi(L) = 0$. Verify that the normalized eigenfunctions read

$$\varphi_n(q) = \left(\frac{2}{L}\right)^{1/2} \sin(n\frac{\pi}{L}q) \tag{2}$$

with $n \in \mathbb{N}$ and eigenvalues

$$E_n = \frac{\pi^2}{2mL^2} n^2.$$
 (3)

(b) It is known from Fourier series that the functions $1, \sin nx, \cos nx$ $(n \in \mathbb{N})$, after normalization, form an orthonormal basis of $L^2([-\pi, \pi])$. How can we conclude that the functions (2) form an orthonormal basis of $L^2([0, L])$?

Problem 41: Projection to fermionic wave functions (hand in, 25 points) We write $(-1)^{\sigma}$ for the sign of a permutation $\sigma \in S_N$. We want to show that P_{-} defined

We write $(-1)^{\circ}$ for the sign of a permutation $\sigma \in S_N$. We want to show that P_{-} defined by

$$P_{-}\psi(\boldsymbol{q}_{1},\ldots,\boldsymbol{q}_{N}) = \frac{1}{N!} \sum_{\sigma \in S_{N}} (-1)^{\sigma} \psi(\boldsymbol{q}_{\sigma(1)},\ldots,\boldsymbol{q}_{\sigma(N)})$$
(4)

is the orthogonal projection to the subspaces of anti-symmetric functions in $\mathscr{H} = L^2(\mathbb{R}^{3N})$. Proceed as follows:

(a) $P_{-}\psi$ is an anti-symmetric function.

(b) If ψ is already anti-symmetric, then $P_{-}\psi = \psi$.

(c) $P_{-}^{2} = P_{-}$

(d) $P_{-}: \mathscr{H} \to \mathscr{H}$ is self-adjoint.

From (c) and (d) it follows that P_{-} is an orthogonal projection, and from (a) and (b) that its range is the space of anti-symmetric functions in \mathcal{H} .

Hand in: By 23:59 on Monday, July 7, 2025 via urm.math.uni-tuebingen.de