MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 10

Problem 42: Complex Gaussian in d dimensions (hand in, 25 points)

The complex random variable X obeys the complex Gaussian distribution $\mathcal{N}_{\mathbb{C}}(z, \sigma^2)$ whenever Re $X \sim \mathcal{N}(\text{Re } z, \sigma^2/2)$, Im $X \sim \mathcal{N}(\text{Im } z, \sigma^2/2)$, and Re X and Im X are independent. The Gaussian distribution $\mathcal{N}_{\mathbb{C}^d}(\psi_0, C)$ on \mathbb{C}^d has density of the form

$$f(\psi) = \mathscr{N} \exp\left(-\langle \psi - \psi_0 | C^{-1} | \psi - \psi_0 \rangle\right), \qquad (1)$$

where the complex $d \times d$ matrix C is self-adjoint and positive definite. Use what we know about the real Gaussian distribution to show for $\Psi \sim \mathcal{N}_{\mathbb{C}^d}(\psi_0, C)$ that (a) $\mathcal{N} = \pi^{-d} (\det C)^{-1}$

(b) C is the complex covariance matrix, $C = \mathbb{E} |\Psi - \psi_0\rangle \langle \Psi - \psi_0|$ (*hint*: diagonalize)

(c) for every $\phi \in \mathbb{C}^d$ we have that $\langle \phi | \Psi \rangle$ obeys a complex Gaussian distribution.

Problem 43: Conditional wave function (hand in, 25 points) For a given ONB $\{\phi_q\}$ of \mathscr{H}_b and $\psi \in \mathbb{S}(\mathscr{H}_s \otimes \mathscr{H}_b)$, the conditional wave function ψ_s is the random vector in $\mathbb{S}(\mathscr{H}_s)$ given by

$$\psi_s = \mathcal{N} \langle \phi_Q | \psi \rangle_b$$

with partial inner product only in b, normalizing factor \mathcal{N} , and random Q,

$$\mathbb{P}(Q=q) = \|\langle \phi_q | \psi \rangle_b \|_s^2.$$

Show that the density matrix of the distribution μ_s of ψ_s is exactly the reduced density matrix of ψ , $\rho_{\mu_s} = \rho_s^{\psi}$ with $\rho_{\mu_s} = \mathbb{E}|\psi_s\rangle\langle\psi_s|$ and $\rho_s^{\psi} = \operatorname{tr}_b|\psi\rangle\langle\psi|$.

Problem 44: Typicality of macroscopic thermal equilibrium (hand in, 25 points) Let $0 < \varepsilon < \delta < 1$. Let \mathscr{H}_{eq} be a subspace of the finite-dimensional Hilbert space \mathscr{H}_{mc} with dim $\mathscr{H}_{eq}/\dim \mathscr{H}_{mc} = 1 - \varepsilon$, let P_{eq} be the projection to \mathscr{H}_{eq} , and let u_{mc} be the normalized uniform distribution over $\mathbb{S}(\mathscr{H}_{mc})$. Show for the set

$$MATE = \left\{ \psi \in \mathbb{S}(\mathscr{H}_{mc}) : \langle \psi | P_{eq} | \psi \rangle > 1 - \delta \right\}$$

that

$$u_{\rm mc}({\rm MATE}) > 1 - \frac{\varepsilon}{\delta}$$
.

(As a consequence, if $\varepsilon \ll \delta \ll 1$, most wave functions lie in the set MATE of "macroscopic thermal equilibrium states.") *Hint*: Determine the average of $\langle \psi | P_{eq} | \psi \rangle$ on $\mathbb{S}(\mathscr{H}_{mc})$. If a function $f \leq 1$ has average near 1, why does it have to be close to 1 at most points?

Problem 45: Eigenfunctions in equilibrium (hand in, 25 points)

Show that most eigenvectors of H in \mathscr{H}_{mc} (in fact at least the fraction $1 - \varepsilon/\delta$) lie in the set MATE from Problem 44. (Actually, that is true of every ONB. *Hint*: Proceed analogously to Problem 44.)

Hand in: By 23:59 on Monday, July 14, 2025 via urm.math.uni-tuebingen.de