Geometry in Physics
 Homework Assignment \# 10

Problem 40: Commuting flows

Let $X, Y \in \mathcal{T}_{0}^{1}(M)$ be complete vector fields and Φ_{t}^{X} and Φ_{s}^{Y} the corresponding flows. Show that the following assertions are equivalent:
(i) $[X, Y]=0$
(ii) $\Phi_{t}^{X *} Y=Y$ for all $t \in \mathbb{R}$ and $\Phi_{s}^{Y *} X=X$ for all $s \in \mathbb{R}$
(iii) $\Phi_{s}^{X} \circ \Phi_{t}^{Y}=\Phi_{t}^{Y} \circ \Phi_{s}^{X}$ for all $s, t \in \mathbb{R}$.

Hint: Recall lemma 8.3, lemma 8.10, and proposition 7.13 from the lecture notes.

Problem 41: Hamiltonian flows and Liouville's theorem

Let $\omega \in \Lambda_{2}(M)$ be non-degenerate and closed. Such an ω is called a symplectic form. Show that for any $H \in C^{\infty}(M)$ there exists a unique vector field $X_{H, \omega}$ such that

$$
\omega\left(X_{H, \omega}, \cdot\right)=\mathrm{d} H(\cdot)
$$

i.e. $i_{X_{H, \omega}} \omega=\mathrm{d} H$. The vector field $X_{H, \omega}$ is called the Hamiltonian vector field of the Hamiltonian function H with respect to the symplectic form ω.

Now assume that $X_{H, \omega}$ is complete. Show that the symplectic form ω is invariant under the corresponding Hamiltonian flow, i.e. that

$$
\Phi_{t}^{X_{H, \omega^{*}}} \omega=\omega \quad \text { for all } t \in \mathbb{R} .
$$

This statement is called Liouville's theorem and it shows that the flow maps of a Hamiltonian vector field are canonical transformations.

Hint: For the uniqueness of $X_{H, \omega}$ the non-degeneracy of ω is important. Liouville's theorem follows easily by taking a derivative and applying Cartan's formula (cf. the proof of lemma 8.10 in the lecture notes).

Problem 42: The tangent and the normal bundle of submanifolds

Let M be an n-dimensional manifold, N a p-dimensional manifold, $f: N \rightarrow M$ an embedding, and write $\tilde{N}:=f(N) \subset M$.
(a) Show that the tangent bundle of N in M given by $T \tilde{N}:=\left.D f(T N) \subset T M\right|_{\tilde{N}}$ is really a subbundle of $\left.T M\right|_{\tilde{N}}$ by providing explicit local trivialisations in terms of charts φ for N.
(b) Now assume in addition that there exists a smooth function $F: M \rightarrow \mathbb{R}^{n-p}$ such that $\tilde{N}=\{x \in M \mid F(x)=0\}$ and that $\left.D F\right|_{x}$ has full rank for all $x \in \tilde{N}$. Show that

$$
T \tilde{N}=\left\{\left.(x, v) \in T M\right|_{\tilde{N}} \mid v \in \operatorname{ker}\left(\left.D F\right|_{x}\right)\right\} .
$$

(c) Let $g \in \mathcal{T}_{2}^{0}(M)$ be a Riemannian metric. Formulate a definition of the normal bundle $T \tilde{N}^{\perp}$ in such a way that $T \tilde{N} \oplus T \tilde{N}^{\perp}=\left.T M\right|_{\tilde{N}}$ and such that for all $v \in T_{x} \tilde{N}$ and $w \in T_{x} \tilde{N}^{\perp}$ one has $\left.g\right|_{x}(v, w)=0$.

