GEOMETRY IN PHYSICS

Homework Assignment # 11

Problem 43: Subbundles of $S^1 \times \mathbb{R}^2$

(a) Show that the set of rank-1 subbundles of the trivial bundle $S^1 \times \mathbb{R}^2$ is in one-to-one correspondence with the set of smooth functions $f : \mathbb{R} \to \mathbb{R}$ that are 2π -periodic modulo π , i.e.

$$f(\varphi + 2\pi) = f(\varphi) + w \cdot \pi$$

for all $\varphi \in \mathbb{R}$ and some $w \in \mathbb{Z}$, and that satisfy $f(0) \in [0, \pi)$.

- (b) Construct a rank-1 subbundle of the trivial bundle $S^1 \times \mathbb{R}^2$ that has the structure of the Möbius strip. Show that every section of this bundle has at least one zero and conclude that this bundle is not trivialisable.
- (c) Two bundles over the same manifold are called isomorphic, if there exists a diffeomorphism between them that acts fibre-wise as a vector space isomorphism. Find all isomorphism classes of rank-1 subbundles of $S^1 \times \mathbb{R}^2$.

Hint: Define the "winding number" of such a subbundle and understand which winding numbers lead to isomorphic bundles. As a first step use that, according to proposition 9.18, two bundles over the same manifold that both admit a global frame are isomorphic.

Problem 44: A connection on $S^1 \times \mathbb{R}$ without non-trivial constant sections

Think of the smooth functions $C^{\infty}(S^1)$ on \mathbb{R} as sections of the trivial line bundle $S^1 \times \mathbb{R}$. Find a connection ∇ on $S^1 \times \mathbb{R}$ such that for $f \in \Gamma(S^1 \times \mathbb{R})$ it holds that

 $\nabla_X f = 0$ for some $X \in \mathcal{T}_0^1(S^1)$ with $X(x) \neq 0$ for all $x \in S^1 \quad \Rightarrow \quad f \equiv 0$.

Problem 45: The induced connection on a subbundle

Let $\pi : E \to M$ be a vector bundle with connection ∇^E . Let $F \subset E$ be a subbundle and $P_F \in \text{End}(E)$ with $P_F(x)$ being a projection onto F_x for each $x \in M$. Show that

$$\nabla^F : \mathcal{T}_0^1(M) \times \Gamma(F) \to \Gamma(F) , \qquad (X, S) \mapsto \nabla^F_X S := P_F \nabla^E_X S ,$$

defines a connection on F.

Given an inner product $\langle \cdot, \cdot \rangle_E$ on E, the canonical choice for $P_F(x)$ is the orthogonal projection onto the subspace F_x . A connection ∇^E on such a vector bundle is called **metric** if for all $S, T \in \Gamma(E)$ and $X \in \mathcal{T}_0^1(M)$ it holds that

$$d\langle S,T\rangle_E(X) = \langle \nabla^E_X S,T\rangle_E + \langle S,\nabla^E_X T\rangle_E.$$

Let ∇^E be a metric connection on the bundle E with inner product $\langle \cdot, \cdot \rangle_E$ and ∇^F the canonical induced connection on a subbundle $F \subset E$. Show that ∇^F is metric with respect to the induced inner product on F.