Geometry in Physics
 Homework Assignment \# 12

Problem 46: The action of affine connections on 1-forms w.r.t. coordinates

Let ∇ be an affine connection. Show that the action of its canonical lift to 1 -forms is given in local coordinates by

$$
\nabla_{X} \omega=\left(X^{i} \partial_{i} \omega_{j}-X^{i} \omega_{k} \Gamma_{i j}^{k}\right) \mathrm{d} q^{j} .
$$

Problem 47: Locality of connections

Let ∇ be a connection on a vector bundle $\pi: E \rightarrow M, X \in \mathcal{T}_{0}^{1}(M), x \in M$, and $u:(-\varepsilon, \varepsilon) \rightarrow M$ a smooth curve with $u(0)=x$ and $\dot{u}(0)=X(x)$ for some $\varepsilon>0$.

Let $S, \tilde{S} \in \Gamma(E)$ be such that $S \circ u=\tilde{S} \circ u$. Show that $\left(\nabla_{X} S\right)(x)=\left(\nabla_{X} \tilde{S}\right)(x)$.
Hence, $\left(\nabla_{X} S\right)(x)$ depends only on the values of S along a curve with velovity $X(x)$ through x.
Hint: Use the properties of D_{t}.

Problem 48: Induced connection on a submanifold

Let $\tilde{\nabla}$ be a connection on a vector bundle $\pi: E \rightarrow M$ and let $N \subset M$ be a submanifold. For $X \in \mathcal{T}_{0}^{1}(N)$ and $S \in \Gamma\left(\left.E\right|_{N}\right)$ set

$$
\nabla_{X} S:=\left.\left(\tilde{\nabla}_{\tilde{X}} \tilde{S}\right)\right|_{N}
$$

for some extensions $\tilde{X} \in \mathcal{T}_{0}^{1}(M)$ and $\tilde{S} \in \Gamma(E)$ of X resp. S. Show that $\nabla_{X} S$ does not depend on the choices for \tilde{X} and \tilde{S} and that it defines a connection on $\left.E\right|_{N}$.
Hint: Use the statement of problem 47. Also note that you may assume that such extensions \tilde{X} and \tilde{S} always exist, although the proof of this assertion in not difficult and you might want to think about it, too.

Problem 49: The tangential connection of a submanifold of \mathbb{R}^{n}

Let $\tilde{\nabla}$ be the trivial connection on the (trivial) tangent bundle of $M=\mathbb{R}^{n}$ and let $\tilde{g} \in \mathcal{T}_{2}^{0}(M)$ denote the euclidian metric. Show that $\tilde{\nabla}$ is compatible with \tilde{g}, i.e. that

$$
\tilde{\nabla}_{\tilde{X}} \tilde{g}(\tilde{Y}, \tilde{Z})=\tilde{g}\left(\tilde{\nabla}_{\tilde{X}} \tilde{Y}, \tilde{Z}\right)+\tilde{g}\left(\tilde{Y}, \tilde{\nabla}_{\tilde{X}} \tilde{Z}\right) \quad \text { for all } \tilde{X}, \tilde{Y}, \tilde{Z} \in \mathcal{T}_{0}^{1}(M)
$$

Let now $N \subset M$ be a submanifold and define the induced connection ∇ on $T N$ by first restricting $\tilde{\nabla}$ to $\left.T M\right|_{N}$ as in problem 48 and then restricting the latter to the subbundle $\left.T N \subset T M\right|_{N}$ as in problem 45 using the orthogonal projection in \mathbb{R}^{n} with respect to the euclidian metric.

Show that ∇ is compatible with respect to the restriction g of \tilde{g} to N, i.e. that

$$
\nabla_{X} g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \quad \text { for all } X, Y, Z \in \mathcal{T}_{0}^{1}(N)
$$

