Geometry in Physics

Homework Assignment \# 13

Problem 50: Christoffel symbols for the tangential connection on S^{2}

Consider the sphere S^{2} as a submanifold of \mathbb{R}^{3}, i.e. $S^{2}:=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\} \subset \mathbb{R}^{3}$. A local chart is given by the inverse of the map

$$
\varphi^{-1}:(0, \pi) \times(0,2 \pi) \rightarrow V \subset S^{2} \subset \mathbb{R}^{3}, \quad(\theta, \phi) \mapsto(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

where $V:=\varphi^{-1}((0, \pi) \times(0,2 \pi))$ is the domain of the chart.
Compute all Christoffel symbols of the tangential connection on S^{2} (c.f. problem 49) with respect to the coordinate vector fields ∂_{ϕ} and ∂_{θ} on S^{2} by directly computing e.g.

$$
\nabla_{\partial_{\phi}} \partial_{\theta}:=P(\theta, \phi) \tilde{\nabla}_{\tilde{\partial}_{\phi}} \tilde{\partial}_{\theta}
$$

for appropriate extensions $\tilde{\partial}_{\phi}$ and $\tilde{\partial}_{\theta}$ of the coordinate vector fields to an open neighbourhood of $V \subset \mathbb{R}^{3}$ and $P(\theta, \phi)$ the orthogonal projection onto the tangent space of S^{2} at the point (θ, ϕ).
Hint: You can extend φ to a neighbourhood \tilde{V} of V by setting

$$
\tilde{\varphi}^{-1}:(0, \infty) \times(0, \pi) \times(0,2 \pi) \rightarrow \tilde{V} \subset \mathbb{R}^{3}, \quad(r, \theta, \phi) \mapsto r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) .
$$

Problem 51: Parallel transport along curves in \mathbb{R}^{3}

Let $u: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a smooth curve of unit speed, i.e. such that $\langle\dot{u}(t), \dot{u}(t)\rangle_{\mathbb{R}^{n}} \equiv 1$. Assume, for simplicity, that u is an embedding, i.e. that $U:=u(\mathbb{R}) \subset \mathbb{R}^{n}$ is a one-dimensional submanifold.

The restriction of the tangent bundle $T \mathbb{R}^{n}$ to the submanifold U splits into the orthogonal sum of the tangent bundle $T U$ and the normal bundle $N U$, i.e. $\left.T \mathbb{R}^{n}\right|_{U}=T U \oplus N U$. Show that a section $\tilde{v} \in \Gamma(N U)$ of the normal bundle $N U$ is parallel with respect to the connection ∇^{N} induced by the trivial connection ∇ on $T \mathbb{R}^{n}$, if and only if $v: \mathbb{R} \rightarrow \mathbb{R}^{n}, t \mapsto(\tilde{v} \circ u)(t)$ satisfies the differential equation

$$
\dot{v}(t)=-\langle\ddot{u}(t), v(t)\rangle_{\mathbb{R}^{n}} \dot{u}(t) .
$$

Hint: Understand that $D_{t}^{N} v=P_{N_{u(t)} U} D_{t} v=P_{N_{u(t)} U} \dot{v}(t)$, where $P_{N_{u(t)} U}$ denotes the orthogonal projection onto the normal space at $u(t), D_{t}^{N}$ the covariant derivative along u induced by ∇^{N}, and D_{t} the covariant derivative along u induced by ∇.

Problem 52: Again the tangential connection

As in problem 49, let $\tilde{\nabla}$ be the trivial connection on the (trivial) tangent bundle of $M=\mathbb{R}^{n}$, $\tilde{g} \in \mathcal{T}_{2}^{0}(M)$ the euclidian metric, and $N \subset M$ a submanifold. Denoting by $\psi: N \hookrightarrow M$ the injection, we can define the restriction of \tilde{g} to N by $g:=\psi^{*} \tilde{g}$. Show that the Levi-Civita connection of g agrees with the tangential connection on N constructed in problem 49.

Hint: Because of the uniqueness of the Levi-Civita connection it suffices to prove symmetry of the tangential connection and combine it with known results.

