Geometry in Physics

Homework Assignment \# 5

Problem 16: The differential of the determinant

Consider the group $G L(n, \mathbb{R})$ of invertible $n \times n$-matrices with the matrix-entries A_{i}^{j} as coordinates (i.e. as an open subset of $\mathbb{R}^{n^{2}}$) and the smooth map

$$
\operatorname{det}: G L(n, \mathbb{R}) \rightarrow \mathbb{R}, \quad A \mapsto \operatorname{det} A:=\operatorname{determinant} \text { of } A
$$

(a) Show that the partial derivatives of the determinant map are given by

$$
\frac{\partial}{\partial A_{i}^{j}} \operatorname{det} A=(\operatorname{det} A)\left(A^{-1}\right)_{j}^{i} .
$$

Hint: Use Laplace's expansion of $\operatorname{det} A$ by minors along the i-th column and then use Cramer's rule.
(b) Conclude that the differential $\left.\mathrm{d} \operatorname{det}\right|_{A}$ of the determinant function at the point $A \in G L(n, \mathbb{R})$ acts on a tangent vector $B \in T_{A} G L(n, \mathbb{R}) \cong \operatorname{mat}(n, \mathbb{R}) \cong \mathbb{R}^{n^{2}}$ as

$$
\left(\left.\operatorname{ddet}\right|_{A} \mid B\right)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right)
$$

Here $\operatorname{tr}(C):=\sum_{i=1}^{n} C_{i}^{i}$ denotes the trace of $C \in \operatorname{mat}(n, \mathbb{R})$.

Problem 17: Isometries of Minkowski spacetime 1

On $V=\mathbb{R}^{4}$ let $\eta \in V_{2}^{0}$ be the Minkowski metric, i.e. $\eta_{i j}=\sigma_{i} \delta_{i j}$ with $\sigma_{1}=-1$ and $\sigma_{i \neq 1}=1$.
(a) Let $\lambda \in V_{1}^{1}$. Argue that λ defines a linear map $\Lambda: V \rightarrow V$. Then show that Λ is an isometry, i.e. $\eta(\Lambda v, \Lambda v)=\eta(v, v)$ for all $v \in V$, if and only if

$$
\lambda_{k}^{i} \eta_{i j} \lambda_{\ell}^{j}=\eta_{k \ell} \quad \text { i.e. } \quad \Lambda^{T} \eta \Lambda=\eta
$$

Argue that in this notation the matrix representing the linear map Λ is written in the form $\Lambda_{i j}=\lambda_{j}^{i}$ (that is with an upper row-index and a lower column-index).
(b) Show that an orthogonal transformation in the last three coordinates, i.e.

$$
R=\left(\begin{array}{ll}
1 & 0 \\
0 & r
\end{array}\right)
$$

with $r \in O(3)$ as well as the s-boost in the x-direction, i.e.

$$
B_{x}^{s}=\left(\begin{array}{cccc}
\cosh s & \sinh s & 0 & 0 \\
\sinh s & \cosh s & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad s \in \mathbb{R}
$$

are isometries of Minkowski spacetime. Conclude that special Lorentz transformations of the form

$$
\Lambda=R_{1} B_{x}^{s} R_{2}
$$

are isometries as well.

Problem 18: Isometries of Minkowski spacetime 2 *

Let again $V=\mathbb{R}^{4}$ with the Minkowski metric η and let $\lambda \in V_{1}^{1}$ correspond to an isometric isomorphism denoted by Λ. In addition assume that λ is future preserving, i.e.

$$
\eta\left(e_{1}, \Lambda e_{1}\right)<0
$$

where $e_{1}=(1,0,0,0)$. Show that Λ is a special Lorentz transformation, i.e. that it can be written in the form

$$
\Lambda=R_{1} B_{x}^{s} R_{2}
$$

with R_{i} and B_{x}^{s} as in problem 17.
Hint: Consider Λe_{1} and find R_{1}^{-1} and B_{x}^{s} such that $R_{1}^{-1} \Lambda e_{1}=B_{x}^{s} e_{1}$.

Problem 19: Constant functions and pull-backs

Let N be a smooth connected manifold and $f \in C^{\infty}(M)$. Show that f is constant if and only if $\mathrm{d} f \equiv 0$.

Now let $\gamma: N \rightarrow M$ be a smooth map into another manifold M. Show that a function $g \in C^{\infty}(M)$ is constant on the set $\gamma(N) \subset M$ if and only if $\gamma^{*}(\mathrm{~d} g) \equiv 0$.

Please hand in your written solutions on Tuesday, November 20, at the beginning of the lecture.

