GEOMETRY IN PHYSICS

Homework Assignment # 5

Problem 16: The differential of the determinant

Consider the group $GL(n, \mathbb{R})$ of invertible $n \times n$ -matrices with the matrix-entries A_i^j as coordinates (i.e. as an open subset of \mathbb{R}^{n^2}) and the smooth map

 $\det: GL(n, \mathbb{R}) \to \mathbb{R}, \quad A \mapsto \det A := \det \text{eterminant of } A.$

(a) Show that the partial derivatives of the determinant map are given by

$$\frac{\partial}{\partial A_i^j} \det A = (\det A) \left(A^{-1} \right)_j^i.$$

Hint: Use Laplace's expansion of $\det A$ *by minors along the i-th column and then use Cramer's rule.*

(b) Conclude that the differential $d \det|_A$ of the determinant function at the point $A \in GL(n, \mathbb{R})$ acts on a tangent vector $B \in T_A GL(n, \mathbb{R}) \cong mat(n, \mathbb{R}) \cong \mathbb{R}^{n^2}$ as

$$(\operatorname{ddet}|_A | B) = (\operatorname{det} A) \operatorname{tr}(A^{-1}B).$$

Here $\operatorname{tr}(C) := \sum_{i=1}^{n} C_i^i$ denotes the trace of $C \in \operatorname{mat}(n, \mathbb{R})$.

Problem 17: Isometries of Minkowski spacetime 1

On $V = \mathbb{R}^4$ let $\eta \in V_2^0$ be the Minkowski metric, i.e. $\eta_{ij} = \sigma_i \delta_{ij}$ with $\sigma_1 = -1$ and $\sigma_{i \neq 1} = 1$.

(a) Let $\lambda \in V_1^1$. Argue that λ defines a linear map $\Lambda : V \to V$. Then show that Λ is an isometry, i.e. $\eta(\Lambda v, \Lambda v) = \eta(v, v)$ for all $v \in V$, if and only if

$$\lambda_k^i \eta_{ij} \lambda_\ell^j = \eta_{k\ell}$$
 i.e. $\Lambda^T \eta \Lambda = \eta_{\ell}$

Argue that in this notation the matrix representing the linear map Λ is written in the form $\Lambda_{ij} = \lambda_i^i$ (that is with an upper row-index and a lower column-index).

(b) Show that an orthogonal transformation in the last three coordinates, i.e.

$$R = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix}$$

with $r \in O(3)$ as well as the s-boost in the x-direction, i.e.

$$B_x^s = \begin{pmatrix} \cosh s & \sinh s & 0 & 0\\ \sinh s & \cosh s & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad s \in \mathbb{R},$$

are isometries of Minkowski spacetime. Conclude that special Lorentz transformations of the form

$$\Lambda = R_1 B_x^s R_2$$

are isometries as well.

Problem 18: Isometries of Minkowski spacetime 2 *

Let again $V = \mathbb{R}^4$ with the Minkowski metric η and let $\lambda \in V_1^1$ correspond to an isometric isomorphism denoted by Λ . In addition assume that λ is future preserving, i.e.

$$\eta(e_1, \Lambda e_1) < 0,$$

where $e_1 = (1, 0, 0, 0)$. Show that Λ is a special Lorentz transformation, i.e. that it can be written in the form

$$\Lambda = R_1 B_x^s R_2$$

with R_i and B_x^s as in problem 17.

Hint: Consider Λe_1 and find R_1^{-1} and B_x^s such that $R_1^{-1}\Lambda e_1 = B_x^s e_1$.

Problem 19: Constant functions and pull-backs

Let N be a smooth connected manifold and $f \in C^{\infty}(M)$. Show that f is constant if and only if $df \equiv 0$.

Now let $\gamma : N \to M$ be a smooth map into another manifold M. Show that a function $g \in C^{\infty}(M)$ is constant on the set $\gamma(N) \subset M$ if and only if $\gamma^*(dg) \equiv 0$.

Please hand in your written solutions on Tuesday, November 20, at the beginning of the lecture.