GEOMETRY IN PHYSICS

Homework Assignment # 6

Problem 21: The wedge product

Let $\omega \in \Lambda_k$ and $\nu \in \Lambda_p$. Show that

$$\omega \wedge \nu = (-1)^{kp} \, \nu \wedge \omega \, .$$

Hint: You can use basis representations and the property (5.1) of the wedge product of covectors.

Problem 22: The canonical volume form

Let $g \in V_2^0$ be non-degenerate, $(e^j)_{j=1,\dots,n}$ and $(\tilde{e}^j)_{j=1,\dots,n}$ bases of V^* with the same orientation, and

$$g = \sum_{i,j=1}^{n} g_{ij} e^{i} \otimes e^{j} = \sum_{i,j=1}^{n} \tilde{g}_{ij} \tilde{e}^{i} \otimes \tilde{e}^{j}.$$

Show that

$$\sqrt{\left|\det g_{ij}\right|} e^1 \wedge e^2 \wedge \dots \wedge e^n = \sqrt{\left|\det \tilde{g}_{ij}\right|} \tilde{e}^1 \wedge \tilde{e}^2 \wedge \dots \wedge \tilde{e}^n , \qquad (*)$$

i.e. that the canonical volume form ε defined by the expression (*) does not depend on the choice of basis.

Problem 23^{*}: The Hodge isomorphism

In this assignment we show that for a non-degenerate and symmetric $g \in V_2^0$ the Hodge operator satisfies

$$* \circ *|_{\Lambda_k} = (-1)^{k (n-k)} \operatorname{sgn}(\det g_{ij}).$$
(1)

- (a) First argue that there exists a basis (e^j) of V^* such that the component matrix g_{ij} of $g = g_{ij}e^i \otimes e^j$ is diagonal, i.e. $g_{ij} = 0$ if $i \neq j$.
- (b) Let $0 \leq j_1 < j_2 < \cdots < j_k \leq n$ be an ordered k-tuple with $j_i \in \{1, \ldots, n\}$. Now compute $*(e^{j_1} \land \cdots \land e^{j_k}) := i_{e^{j_1} \land \cdots \land e^{j_k}} \varepsilon$, where (e^j) is the basis from (a).
- (c) Finally show equation (1).

Problem 24: Hodge duality in Minkowski space

Let * be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^4 . Denoting the canonical coordinates of \mathbb{R}^4 with (t, x_1, x_2, x_3) we have $\eta = -dt \otimes dt + \sum_{i=1}^3 dx^i \otimes dx^i$. Compute the images of the canonical basis vectors of $\Lambda_k(\mathbb{R}^4)$ for each $0 \leq k \leq 4$.

Hint: Save time by using formula (1) from problem 23!

Problem 25: Naturality of the exterior derivative

Let $f: M \to N$ be a smooth map between smooth manifolds M and N and let $\omega \in \Lambda_p(N)$. Show that

$$f^* \mathrm{d}\omega = \mathrm{d}(f^*\omega).$$

Hint: Look at the computation in the proof of proposition 5.16 in the lecture notes.