Geometry in Physics

Homework Assignment \# 6

Problem 21: The wedge product

Let $\omega \in \Lambda_{k}$ and $\nu \in \Lambda_{p}$. Show that

$$
\omega \wedge \nu=(-1)^{k p} \nu \wedge \omega .
$$

Hint: You can use basis representations and the property (5.1) of the wedge product of covectors.

Problem 22: The canonical volume form

Let $g \in V_{2}^{0}$ be non-degenerate, $\left(e^{j}\right)_{j=1, \ldots, n}$ and $\left(\tilde{e}^{j}\right)_{j=1, \ldots, n}$ bases of V^{*} with the same orientation, and

$$
g=\sum_{i, j=1}^{n} g_{i j} e^{i} \otimes e^{j}=\sum_{i, j=1}^{n} \tilde{g}_{i j} \tilde{e}^{i} \otimes \tilde{e}^{j} .
$$

Show that

$$
\begin{equation*}
\sqrt{\left|\operatorname{det} g_{i j}\right|} e^{1} \wedge e^{2} \wedge \ldots \wedge e^{n}=\sqrt{\left|\operatorname{det} \tilde{g}_{i j}\right|} \tilde{e}^{1} \wedge \tilde{e}^{2} \wedge \ldots \wedge \tilde{e}^{n} \tag{*}
\end{equation*}
$$

i.e. that the canonical volume form ε defined by the expression $(*)$ does not depend on the choice of basis.

Problem 23*: The Hodge isomorphism

In this assignment we show that for a non-degenerate and symmetric $g \in V_{2}^{0}$ the Hodge operator satisfies

$$
\begin{equation*}
\left.* \circ *\right|_{\Lambda_{k}}=(-1)^{k(n-k)} \operatorname{sgn}\left(\operatorname{det} g_{i j}\right) . \tag{1}
\end{equation*}
$$

(a) First argue that there exists a basis $\left(e^{j}\right)$ of V^{*} such that the component matrix $g_{i j}$ of $g=g_{i j} e^{i} \otimes e^{j}$ is diagonal, i.e. $g_{i j}=0$ if $i \neq j$.
(b) Let $0 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n$ be an ordered k-tuple with $j_{i} \in\{1, \ldots, n\}$. Now compute $*\left(e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}\right):=i_{e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}} \varepsilon$, where $\left(e^{j}\right)$ is the basis from (a).
(c) Finally show equation (1).

Problem 24: Hodge duality in Minkowski space

Let $*$ be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^{4}. Denoting the canonical coordinates of \mathbb{R}^{4} with $\left(t, x_{1}, x_{2}, x_{3}\right)$ we have $\eta=-\mathrm{d} t \otimes \mathrm{~d} t+\sum_{i=1}^{3} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{i}$. Compute the images of the canonical basis vectors of $\Lambda_{k}\left(\mathbb{R}^{4}\right)$ for each $0 \leq k \leq 4$.
Hint: Save time by using formula (1) from problem 23!

Problem 25: Naturality of the exterior derivative

Let $f: M \rightarrow N$ be a smooth map between smooth manifolds M and N and let $\omega \in \Lambda_{p}(N)$. Show that

$$
f^{*} \mathrm{~d} \omega=\mathrm{d}\left(f^{*} \omega\right)
$$

Hint: Look at the computation in the proof of proposition 5.16 in the lecture notes.

