GEOMETRY IN PHYSICS

Homework Assignment # 7

Problem 26: Maxwell's equations

Let * be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^4 . We assume that the electric field E, the magnetic field B, and the current density J are smooth time-dependent vector fields on \mathbb{R}^3 , e.g.

$$E: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3, \quad (t, x) \mapsto E(t, x).$$

The charge density is a smooth real-valued function $\rho : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$. One now defines corresponding differential forms on Minkowski space $\widetilde{\mathcal{J}}, \mathcal{E} \in \Lambda_1(\mathbb{R}^4)$ and $\mathcal{B}, \mathcal{F} \in \Lambda_2(\mathbb{R}^4)$ by

$$\begin{aligned} \widetilde{\mathcal{J}} &:= \iota_{\eta}(\rho \,\partial_t, J \cdot \partial_x) = \rho \,\mathrm{d}t - J_i \,\mathrm{d}x^i, \\ \mathcal{E} &:= E_i \,\mathrm{d}x^i, \\ \mathcal{B} &:= * (-B_i \,\mathrm{d}t \wedge \mathrm{d}x^i), \\ \mathcal{F} &:= \mathcal{B} - \mathrm{d}t \wedge \mathcal{E}. \end{aligned}$$

Finally we define the current 3-form as $\mathcal{J} := * \widetilde{\mathcal{J}}$. (Why is it natural to view the current as a 3-form?)

Prove the following two equivalences:

$$\frac{\partial B}{\partial t} + \operatorname{curl} E = 0 \quad \& \quad \operatorname{div} B = 0 \quad \Longleftrightarrow \quad \operatorname{d} \mathcal{F} = 0,$$
$$-\frac{\partial E}{\partial t} + \operatorname{curl} B = J \quad \& \quad \operatorname{div} E = \rho \quad \Longleftrightarrow \quad \operatorname{d}(*\mathcal{F}) = \mathcal{J}.$$

Thus, Maxwell's equations have a very simple form when written in terms of differential forms.

Problem 27: The continuity equation on Minkowski space

Let * be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^4 . Given a time-dependent smooth vector field $J : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ and a time-dependent smooth density $\rho : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$, we define the current 3-form $\mathcal{J} \in \Lambda_3(\mathbb{R}^4)$ as in problem 26. Show that continuity equation

$$\frac{\partial \rho}{\partial t} + \operatorname{div} J = 0$$

is equivalent to

 $\mathrm{d}\,\mathcal{J}\ =\ 0\,.$

Show, in addition, that the inhomogeneous Maxwell equation

$$\mathrm{d} * \mathcal{F} = \mathcal{J}$$

has a solution \mathcal{F} if and only if the current \mathcal{J} solves the continuity equation. Is the solution unique?

Problem 28*: The homotopy operator: preparation for problem 29

Let M be a manifold and $[0,1] \times M$ the product manifold with boundary $(\{0\} \times M) \cup (\{1\} \times M) \cup ((0,1) \times \partial M)$. Let $\iota_t : M \to [0,1] \times M$, $x \mapsto (t,x)$ denote the injection and $\pi : [0,1] \times M \to M$, $(t,x) \mapsto x$ the projection onto M.

(a) Show that every $\omega \in \Lambda_p([0,1] \times M)$ can be split as

$$\omega = \mathrm{d}t \wedge \omega_M + \omega_0 \,,$$

where $\omega_M \in \Lambda_{p-1}([0,1] \times M)$ is given by $\omega_M(\cdot) = \omega(\partial_t, \cdot)$ and $\omega_0 \in \Lambda_p([0,1] \times M)$ by $\omega_0|_{(t,\cdot)} = \pi^* \iota_t^* \omega$. To this end represent both sides of the above equation with respect to a local coordinate basis (dt, dq^1, \ldots, dq^n) where q are local coordinates on M.

(b) One now defines the homotopy operator $K : \Lambda_p([0,1] \times M) \to \Lambda_{p-1}(M)$ by

$$\omega = \mathrm{d}t \wedge \omega_M + \omega_0 \mapsto K\omega := \int_0^1 \omega_M(t) \,\mathrm{d}t \,,$$

where $\omega_M(t) := \iota_t^* \omega_M$. Show that

$$\mathbf{d} \circ K + K \circ \mathbf{d} = \iota_1^* - \iota_0^* \,.$$

Problem 29: Poincaré lemma

Let $\omega \in \Lambda_p(M)$ be closed and M contractible, i.e. there exists a smooth map

 $F: [0,1] \times M \to M$ with $F(0,\cdot) = \mathrm{id}_M$ and $F(1,\cdot) \equiv x_0$ for some $x_0 \in M$.

Thus F "contracts" M continuously into a single point $x_0 \in M$. Show that ω is exact, i.e. $\omega = d\nu$ for some $\nu \in \Lambda_{p-1}(M)$.

Hint: Define $\Omega := F^* \omega$ and act with $d \circ K + K \circ d$ from problem 28 (b) on Ω .

Please hand in your written solutions on Tuesday, December 4, at the beginning of the lecture.