Geometry in Physics

Homework Assignment \# 7

Problem 26: Maxwell's equations

Let $*$ be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^{4}. We assume that the electric field E, the magnetic field B, and the current density J are smooth time-dependent vector fields on \mathbb{R}^{3}, e.g.

$$
E: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad(t, x) \mapsto E(t, x)
$$

The charge density is a smooth real-valued function $\rho: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$.
One now defines corresponding differential forms on Minkowski space $\widetilde{\mathcal{J}}, \mathcal{E} \in \Lambda_{1}\left(\mathbb{R}^{4}\right)$ and $\mathcal{B}, \mathcal{F} \in$ $\Lambda_{2}\left(\mathbb{R}^{4}\right)$ by

$$
\begin{aligned}
\widetilde{\mathcal{J}} & :=\iota_{\eta}\left(\rho \partial_{t}, J \cdot \partial_{x}\right)=\rho \mathrm{d} t-J_{i} \mathrm{~d} x^{i}, \\
\mathcal{E} & :=E_{i} \mathrm{~d} x^{i}, \\
\mathcal{B} & :=*\left(-B_{i} \mathrm{~d} t \wedge \mathrm{~d} x^{i}\right), \\
\mathcal{F} & :=\mathcal{B}-\mathrm{d} t \wedge \mathcal{E} .
\end{aligned}
$$

Finally we define the current 3 -form as $\mathcal{J}:=* \widetilde{\mathcal{J}}$. (Why is it natural to view the current as a 3-form?)
Prove the following two equivalences:

$$
\begin{gathered}
\frac{\partial B}{\partial t}+\operatorname{curl} E=0 \quad \& \quad \operatorname{div} B=0 \quad \Longleftrightarrow \quad \mathrm{~d} \mathcal{F}=0 \\
-\frac{\partial E}{\partial t}+\operatorname{curl} B=J \quad \& \quad \operatorname{div} E=\rho \quad \Longleftrightarrow \quad \mathrm{d}(* \mathcal{F})=\mathcal{J}
\end{gathered}
$$

Thus, Maxwell's equations have a very simple form when written in terms of differential forms.

Problem 27: The continuity equation on Minkowski space

Let $*$ be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^{4}. Given a time-dependent smooth vector field $J: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and a time-dependent smooth density $\rho: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$, we define the current 3 -form $\mathcal{J} \in \Lambda_{3}\left(\mathbb{R}^{4}\right)$ as in problem 26. Show that continuity equation

$$
\frac{\partial \rho}{\partial t}+\operatorname{div} J=0
$$

is equivalent to

$$
\mathrm{d} \mathcal{J}=0
$$

Show, in addition, that the inhomogeneous Maxwell equation

$$
\mathrm{d} * \mathcal{F}=\mathcal{J}
$$

has a solution \mathcal{F} if and only if the current \mathcal{J} solves the conitnuity equation. Is the solution unique?

Problem 28*: The homotopy operator: preparation for problem 29

Let M be a manifold and $[0,1] \times M$ the product manifold with boundary $(\{0\} \times M) \cup(\{1\} \times M) \cup$ $((0,1) \times \partial M)$. Let $\iota_{t}: M \rightarrow[0,1] \times M, x \mapsto(t, x)$ denote the injection and $\pi:[0,1] \times M \rightarrow M$, $(t, x) \mapsto x$ the projection onto M.
(a) Show that every $\omega \in \Lambda_{p}([0,1] \times M)$ can be split as

$$
\omega=\mathrm{d} t \wedge \omega_{M}+\omega_{0}
$$

where $\omega_{M} \in \Lambda_{p-1}([0,1] \times M)$ is given by $\omega_{M}(\cdot)=\omega\left(\partial_{t}, \cdot\right)$ and $\omega_{0} \in \Lambda_{p}([0,1] \times M)$ by $\left.\omega_{0}\right|_{(t,)}=\pi^{*} \iota_{t}^{*} \omega$. To this end represent both sides of the above equation with respect to a local coordinate basis $\left(\mathrm{d} t, \mathrm{~d} q^{1}, \ldots, \mathrm{~d} q^{n}\right)$ where q are local coordinates on M.
(b) One now defines the homotopy operator $K: \Lambda_{p}([0,1] \times M) \rightarrow \Lambda_{p-1}(M)$ by

$$
\omega=\mathrm{d} t \wedge \omega_{M}+\omega_{0} \mapsto K \omega:=\int_{0}^{1} \omega_{M}(t) \mathrm{d} t
$$

where $\omega_{M}(t):=\iota_{t}^{*} \omega_{M}$. Show that

$$
\mathrm{d} \circ K+K \circ \mathrm{~d}=\iota_{1}^{*}-\iota_{0}^{*}
$$

Problem 29: Poincaré lemma

Let $\omega \in \Lambda_{p}(M)$ be closed and M contractible, i.e. there exists a smooth map

$$
F:[0,1] \times M \rightarrow M \text { with } F(0, \cdot)=\operatorname{id}_{M} \text { and } F(1, \cdot) \equiv x_{0} \text { for some } x_{0} \in M .
$$

Thus F "contracts" M continuously into a single point $x_{0} \in M$. Show that ω is exact, i.e. $\omega=\mathrm{d} \nu$ for some $\nu \in \Lambda_{p-1}(M)$.
Hint: Define $\Omega:=F^{*} \omega$ and act with $\mathrm{d} \circ K+K \circ \mathrm{~d}$ from problem 28 (b) on Ω.

Please hand in your written solutions on Tuesday, December 4, at the beginning of the lecture.

