Geometry in Physics

Homework Assignment \# 8

On this assignment you need to hand in only four out of the six problems in order to obtain 100% of the credits. In other words, you can put a $*$ on two problems of your choice.

Problem 30: The Laplace-Beltrami operator

Let M be a smooth manifold euqipped with a (pseudo-)metric $g \in \mathcal{T}_{2}^{0}(M)$ and denote by $*$ the corresponding Hodge operator. On $\Lambda_{k}(M)$ one can define the co-differential $\delta: \Lambda_{k}(M) \rightarrow \Lambda_{k-1}(M)$ by $\delta:=(-1)^{k} *^{-1} \mathrm{~d} *$, where according to problem 23 we have $*^{-1}=(-1)^{k(n-k)} \operatorname{sgn}(g) *$ on Λ_{k}.
(a) Let $M=\mathbb{R}^{n}$ be equipped with the euclidean metric. Show that for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)=\Lambda_{0}\left(\mathbb{R}^{n}\right)$ it holds that

$$
(\delta \mathrm{d}+\mathrm{d} \delta) f=-\Delta f
$$

where $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial q_{i}{ }^{2}}$ is the standard Laplacian.
(b) Let $M=\mathbb{R}^{4}$ be equipped with the Minkowski metric. Show that for $f \in C^{\infty}\left(\mathbb{R}^{4}\right)=\Lambda_{0}\left(\mathbb{R}^{4}\right)$ it holds that

$$
(\delta \mathrm{d}+\mathrm{d} \delta) f=-\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) f
$$

Problem 31: Potentials and Maxwell equations

We consider once more Maxwell's equations and adopt the same notation as in problems 26, 27, and 30 . Let

$$
\delta: \Lambda_{p}\left(\mathbb{R}^{4}\right) \rightarrow \Lambda_{p-1}\left(\mathbb{R}^{4}\right), \quad \omega \mapsto \delta \omega:=(-1)^{p} *^{-1} \mathrm{~d} * \omega=* \mathrm{~d} *
$$

be the co-differential, where the last equality holds specifically for \mathbb{R}^{4} equipped with the Minkowski metric.

Assume that $\mathcal{A} \in \Lambda_{1}\left(\mathbb{R}^{4}\right)$ solves the wave equation

$$
\square \mathcal{A}:=(\delta \mathrm{d}+\mathrm{d} \delta) \mathcal{A}=\widetilde{\mathcal{J}}
$$

and the Lorenz gauge condition

$$
\delta \mathcal{A}=0 .
$$

(a) Show that $\mathcal{F}:=\mathrm{d} \mathcal{A}$ solves Maxwell's equations.
(b) Formulate the wave equation and the Lorenz gauge condition in terms of the components of the basis representation

$$
\mathcal{A}=A_{0} \mathrm{~d} t+A_{1} \mathrm{~d} x^{1}+A_{2} \mathrm{~d} x^{2}+A_{3} \mathrm{~d} x^{3} .
$$

Problem 32: Integrals of closed forms for diffeotopic manifolds

Let M be an n-dimensional manifold and let N be p-dimensional, compact, orientable, and without boundary boundary. Let $\psi_{0}: N \rightarrow M$ and $\psi_{1}: N \rightarrow M$ be smooth and diffeotopic, i.e. there exists a smooth map $F:[0,1] \times N \rightarrow M$ such that

$$
\psi_{0}=F \circ \iota_{0} \quad \text { and } \quad \psi_{1}=F \circ \iota_{1},
$$

where ι_{0} and ι_{1} are the injection of N into $\{0\} \times N$ resp. $\{1\} \times N$. Show that for any closed p-form $\omega \in \Lambda_{p}(M)$ it holds that

$$
\int_{N_{0}} \omega=\int_{N_{1}} \omega
$$

where

$$
\int_{N_{j}} \omega:=\int_{N} \psi_{j}^{*} \omega .
$$

Discuss how the statement and its proof need to be modified for a manifold N with boundary.
Hint: The statement is, by definition, equivalent to $\int_{N} \psi_{0}^{*} \omega=\int_{N} \psi_{1}^{*} \omega$. In order to prove this statement, consider the form $F^{*} \omega \in \Lambda_{p}([0,1] \times N)$ and apply to it the homotopy operator $\mathrm{do} K+K \circ \mathrm{~d}$ from problem 28. Conclude that the form $\left(\psi_{0}^{*}-\psi_{1}^{*}\right) \omega$ is exact and use Stoke's theorem.

Problem 33: Closed forms and holomorphic functions

Let $U_{\mathbb{C}} \subset \mathbb{C}$ be open, $f: U_{\mathbb{C}} \rightarrow \mathbb{C}$ holomorphic, and $\gamma_{\mathbb{C}}:[0,1] \rightarrow U_{\mathbb{C}}$ a smooth curve. Discuss that the expression $\omega=f \mathrm{~d} z$ defines a (complex valued) 1-form on the two-dimensional real manifold $U_{\mathbb{R}^{2}}=\left\{(x, y) \mid x+\mathrm{i} y \in U_{\mathbb{C}}\right\}$ such that for $\gamma_{\mathbb{R}^{2}}:[0,1] \rightarrow U_{\mathbb{R}^{2}}, \gamma_{\mathbb{R}^{2}}(t)=\left(\operatorname{Re} \gamma_{\mathbb{C}}(t), \operatorname{Im} \gamma_{\mathbb{C}}(t)\right)$

$$
\int_{\gamma_{\mathbb{C}}} f \mathrm{~d} z=\int_{\gamma_{\mathbb{R}^{2}}} \omega
$$

(Note that the left hand side denotes the usual line integral in the complex plane.) Write ω in the basis representation with respect to the basis 1 -forms $\mathrm{d} x$ and $\mathrm{d} y$ and show that ω is closed.

Problem 34: Cauchy's integral theorem

Show that the following version of Cauchy's integral theorem is a special case of the statement of problem 32.
Cauchy's integral theorem: Let $U \subset \mathbb{C}$ be open and let γ_{1} and γ_{2} be closed smooth curves in U that are diffeotopic as closed curves. Then it holds for every holomorphic function $f: U \rightarrow \mathbb{C}$ that

$$
\int_{\gamma_{1}} f(z) \mathrm{d} z=\int_{\gamma_{2}} f(z) \mathrm{d} z .
$$

Problem 35: The hairy ball theorem

Show that "one can't comb a hairy ball flat without creating a cowlick", which is a common paraphrase of the following precise statement:

On the n-dimensional sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$ with even dimension n every smooth vector field $X \in \mathcal{T}_{0}^{1}\left(S^{n}\right)$ has at least one zero.
Proceed by contradiction: Assume that there exists a vector field X without zero, which can be normalized to $\|X\|_{\mathbb{R}^{n+1}}=1$ without loss of generality. Now use the property that $\langle X(x), x\rangle_{\mathbb{R}^{n+1}}=0$ in order to construct a diffeotopy $F:[0,1] \times S^{n} \rightarrow S^{n}$ of $\psi_{0}: S^{n} \rightarrow S^{n} \subset \mathbb{R}^{n+1}, \psi_{0}(x)=x$ and $\psi_{1}: S^{n} \rightarrow S^{n} \subset \mathbb{R}^{n+1}, \psi_{1}(x)=-x$. Next find a nowhere vanishing volume form ω on S^{n}, e.g. by using the normal vector field $n(x)=x$ to S^{n} and the canonical volume form ε on \mathbb{R}^{n+1}. Finally show that for even n the map ψ_{1} changes the orientation, i.e.

$$
\int_{S^{n}} \omega=\int_{S^{n}} \psi_{0}^{*} \omega=-\int_{S^{n}} \psi_{1}^{*} \omega,
$$

and derive a contradiction from there.

