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On this assignment you need to hand in only four out of the six problems in order to obtain 100%
of the credits. In other words, you can put a ∗ on two problems of your choice.

Problem 30: The Laplace-Beltrami operator
Let M be a smooth manifold euqipped with a (pseudo-)metric g ∈ T 0

2 (M) and denote by ∗ the
corresponding Hodge operator. On Λk(M) one can define the co-differential δ : Λk(M)→ Λk−1(M)
by δ := (−1)k ∗−1 d ∗, where according to problem 23 we have ∗−1 = (−1)k(n−k)sgn(g)∗ on Λk.

(a) Let M = Rn be equipped with the euclidean metric. Show that for f ∈ C∞(Rn) = Λ0(Rn)
it holds that

(δd + dδ)f = −∆f ,

where ∆ =
∑n

i=1
∂2

∂qi2
is the standard Laplacian.

(b) Let M = R4 be equipped with the Minkowski metric. Show that for f ∈ C∞(R4) = Λ0(R4)
it holds that

(δd + dδ)f = −
(
∂2

∂t2
− ∆

)
f .

Problem 31: Potentials and Maxwell equations

We consider once more Maxwell’s equations and adopt the same notation as in problems 26, 27,
and 30. Let

δ : Λp(R4)→ Λp−1(R4) , ω 7→ δω := (−1)p ∗−1 d ∗ ω = ∗ d ∗
be the co-differential, where the last equality holds specifically for R4 equipped with the Minkowski
metric.

Assume that A ∈ Λ1(R4) solves the wave equation

�A := (δd + dδ)A = J̃

and the Lorenz gauge condition
δA = 0 .

(a) Show that F := dA solves Maxwell’s equations.

(b) Formulate the wave equation and the Lorenz gauge condition in terms of the components of
the basis representation

A = A0dt+ A1dx
1 + A2dx

2 + A3dx
3 .

Problem 32: Integrals of closed forms for diffeotopic manifolds

Let M be an n-dimensional manifold and let N be p-dimensional, compact, orientable, and without
boundary boundary. Let ψ0 : N → M and ψ1 : N → M be smooth and diffeotopic, i.e. there
exists a smooth map F : [0, 1]×N →M such that

ψ0 = F ◦ ι0 and ψ1 = F ◦ ι1 ,
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where ι0 and ι1 are the injection of N into {0}×N resp. {1}×N . Show that for any closed p-form
ω ∈ Λp(M) it holds that ∫

N0

ω =

∫
N1

ω ,

where ∫
Nj

ω :=

∫
N

ψ∗jω .

Discuss how the statement and its proof need to be modified for a manifold N with boundary.

Hint: The statement is, by definition, equivalent to
∫
N
ψ∗0ω =

∫
N
ψ∗1ω. In order to prove this

statement, consider the form F ∗ω ∈ Λp([0, 1]×N) and apply to it the homotopy operator d◦K+K◦d
from problem 28. Conclude that the form (ψ∗0 − ψ∗1)ω is exact and use Stoke’s theorem.

Problem 33: Closed forms and holomorphic functions

Let UC ⊂ C be open, f : UC → C holomorphic, and γC : [0, 1]→ UC a smooth curve. Discuss that
the expression ω = f dz defines a (complex valued) 1-form on the two-dimensional real manifold
UR2 = {(x, y) |x+ iy ∈ UC} such that for γR2 : [0, 1]→ UR2 , γR2(t) = (Re γC(t), Im γC(t))∫

γC

f dz =

∫
γR2

ω .

(Note that the left hand side denotes the usual line integral in the complex plane.) Write ω in the
basis representation with respect to the basis 1-forms dx and dy and show that ω is closed.

Problem 34: Cauchy’s integral theorem

Show that the following version of Cauchy’s integral theorem is a special case of the statement of
problem 32.

Cauchy’s integral theorem: Let U ⊂ C be open and let γ1 and γ2 be closed smooth curves in U that
are diffeotopic as closed curves. Then it holds for every holomorphic function f : U → C that∫

γ1

f(z) dz =

∫
γ2

f(z) dz .

Problem 35: The hairy ball theorem

Show that “one can’t comb a hairy ball flat without creating a cowlick”, which is a common
paraphrase of the following precise statement:

On the n-dimensional sphere Sn = {x ∈ Rn+1 | ‖x‖ = 1} with even dimension n every smooth
vector field X ∈ T 1

0 (Sn) has at least one zero.

Proceed by contradiction: Assume that there exists a vector field X without zero, which can be
normalized to ‖X‖Rn+1 = 1 without loss of generality. Now use the property that 〈X(x), x〉Rn+1 = 0
in order to construct a diffeotopy F : [0, 1] × Sn → Sn of ψ0 : Sn → Sn ⊂ Rn+1, ψ0(x) = x and
ψ1 : Sn → Sn ⊂ Rn+1, ψ1(x) = −x. Next find a nowhere vanishing volume form ω on Sn, e.g. by
using the normal vector field n(x) = x to Sn and the canonical volume form ε on Rn+1. Finally
show that for even n the map ψ1 changes the orientation, i.e.∫

Sn

ω =

∫
Sn

ψ∗0ω = −
∫
Sn

ψ∗1ω ,

and derive a contradiction from there.
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