Geometry in Physics

Homework Assignment \# 9

Problem 36: Brouwer fixed-point theorem (smooth version)

Let $B^{n}:=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ be the unit ball in \mathbb{R}^{n} and $S^{n-1}=\partial B^{n}$ its boundary, the $(n-1)$ sphere.

Let $f: B^{n} \rightarrow B^{n}$ be a smooth map. Show that f has at least one fixed-point, i.e. that there exists at least one $x_{0} \in B^{n}$ with $x_{0}=f\left(x_{0}\right)$.
Guidance: Assume that no such fixed-point exists. Then every x defines an open half-line E_{x} starting in $f(x)$ and going through $x, E_{x}:=\{f(x)+t(x-f(x)) \mid t \in(0, \infty)\}$. Let $F: B^{n} \rightarrow S^{n-1}$ be the function that maps x to the unique intersection of E_{x} with S^{n-1}. Show that F acts on $S^{n-1} \subset B^{n}$ as the identity, i.e. $F \circ \iota=\mathrm{id}$, where $\iota: S^{n-1} \rightarrow B^{n}$ is the natural injection. Apply Stoke's theorem to $\omega:=F^{*} \varepsilon$ in order to construct a contradiction.
Remark: Brouwer's fixed-point theorem is the generalisation of this result to continuous functions f. One can obtain it from the smooth version proved here by applying the Stone-Weierstrass approximation theorem.

Problem 37: Explicit flows

Let $M:=\left\{x \in \mathbb{R}^{2}| | x \mid<1\right\}$. Specify explicitly vector fields $Z \in \mathcal{T}_{0}^{1}(M)$, the associated maximal flows $\Phi^{Z}: D \rightarrow M$, and the domain D, such that:
(i) Z is complete,
(ii) Z is not complete.

Problem 38: Linearisation of vector fields at fixed-points

Let $X \in \mathcal{T}_{0}^{1}(M)$ be a smooth vector field and $x_{0} \in M$ a zero of X, i.e. $X\left(x_{0}\right)=\left(x_{0}, 0\right)$. In a chart φ with $\varphi\left(x_{0}\right)=0$ let

$$
X_{\varphi}(q)=D X_{\varphi}(0) q+\mathcal{O}\left(\|q\|^{2}\right)
$$

be the Taylor approximation of $X_{\varphi}:=I \circ \varphi_{*} X$ at 0 . Here $D f$ denotes the usual differential of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, i.e. the Jacobi matrix $D f(q)_{i j}=\partial_{q_{j}} f_{i}(q)$. Let ψ be a further chart with $\psi\left(x_{0}\right)=0$ and $\Phi=\psi \circ \varphi^{-1}$ the transition map.
Show that

$$
D X_{\psi}(0)=D \Phi(0) D X_{\varphi}(0) D \Phi(0)^{-1}
$$

and conclude that the eigenvalues of the "linearisation" $D X_{\varphi}(0)$ and their multiplicities do not depend on the chosen chart.

Problem 39: Fixed-points for gradient fileds and Hamiltonian vector fields

Let $M=\mathbb{R}^{2}$ with coordinates $(q, p) \in \mathbb{R}^{2}$ and $H \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Discuss the possible local behavior near fixed-points of the following two types of vector-fields by considering the linear approximation. Sketch in all cases the vector field and the local flow.
(i) Gradient fields:

$$
X_{G}(q, p):=\binom{\partial_{q} H(q, p)}{\partial_{p} H(q, p)}
$$

$$
\text { (ii) Hamiltonian vector fields: } \quad X_{H}(q, p):=\binom{\partial_{p} H(q, p)}{-\partial_{q} H(q, p)} .
$$

