Geometry in Physics*

Winter Semester 2018/19

Stefan Teufel
Mathematisches Institut
Uni Tübingen

February 4, 2019

* These lecture notes are not a substitute for attending the lectures, but should be used only in parallel! If you find typos or more serious errors, please let me know.

Contents

1 Manifolds 1
2 The tangent bundle 9
3 The cotangent bundle 19
4 Tensors 23
5 Differential forms and the exterior derivative 31
6 Integration on manifolds 41
7 Integral curves and flows 49
8 The Lie derivative 55
9 Vector bundles 61
10 Connections on vector bundles 65
11 The Riemannian connection 77
12 Curvature 81
13 Symplectic forms and Hamiltonian flows 89

1 Manifolds

I assume that you know calculus for functions and vector fields on the "flat" euclidean space \mathbb{R}^{n}. In this course you learn how to do calculus on "curved" spaces, called manifolds, that still look locally like some possibly curved piece of \mathbb{R}^{n}. In order to translate concepts like differentiation and integration to manifolds, we need to understand which mathematical structures of \mathbb{R}^{n} underlie the respective concepts and how we can lift them to these more general spaces. In the process of doing this, we will gain a more geometric view of calculus that is necessary to understand most of modern physics.
Recall that one way to define continuity of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is to require that for every open set $O \subset \mathbb{R}^{m}$ its pre-image $f^{-1}(O):=\left\{x \in \mathbb{R}^{n} \mid f(x) \in O\right\} \subset \mathbb{R}^{m}$ under f is open as well. More generally, a map $f: X \rightarrow Y$ between topological spaces is continuous, if pre-images of open sets under f are open, i.e. if for every open set $O \subset Y$ the set $f^{-1}(O) \subset X$ is open. In other words, to speak of continuity, we need the structure of a topological space.

1.1 Definition. Topological space

A topological space is a pair (M, \mathcal{O}), where M is a set and \mathcal{O} is a set of subsets of M. (The elements $O \in \mathcal{O}$ of \mathcal{O} are thus subsets of M, called the open sets.) One requires that
(i) \emptyset and M are open, i.e. $\emptyset \in \mathcal{O}$ and $M \in \mathcal{O}$,
(ii) arbitrary unions of open sets are open,
(iii) the intersection of two open sets is open.

A topological space (M, \mathcal{O}) has the Hausdorff property if \mathcal{O} separates points in M, i.e. if for any pair $x, y \in M$ of different points $x \neq y$ there exist open sets $V, U \in \mathcal{O}$ such that $x \in V$, $y \in U$, but $V \cap U=\emptyset$.
A topological space (M, \mathcal{O}) is called second countable if there exists a countable basis for the topology of M, that is a countable set $\mathcal{B} \subset \mathcal{O}$ such that any open set can be written as a union of sets in \mathcal{B}.

1.2 Example. Euclidean space \mathbb{R}^{n}

Consider euclidean space \mathbb{R}^{n} with the euclidean metric $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty),(x, y) \mapsto d(x, y):=$ $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}$. Equipped with the topology induced by the metric ${ }^{1}, \mathbb{R}^{n}$ is a second countable Hausdorff space: For $x \neq y \in \mathbb{R}^{n}$ and $\varepsilon:=d(x, y) / 2$ the two balls $B_{\varepsilon}(x)$ and $B_{\varepsilon}(y)$ are disjoint open sets containing x resp. y. Moreover, the open balls $B_{\varepsilon}(x)$ with rational radii $\varepsilon \in \mathbb{Q}$ and rational centers $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}$, form a countable basis for the topology. \diamond

Heuristically speaking, a topological manifold is a topological space that "looks locally like" euclidean space \mathbb{R}^{n}, but might have a completely different shape globally. A curved surface as depicted here is an example of a topological manifold with a topology that looks locally like
 that of \mathbb{R}^{2}.

[^0]
1 Manifolds

To make the notion of "topological spaces that look locally alike" precise, one uses the concept of homeomorphisms.

1.3 Definition. Continuous maps and homeomorphisms

A map $f: M \rightarrow N$ between topological spaces (M, \mathcal{O}) and (N, \mathcal{P}) is called continuous if preimages of open sets are open, i.e. if $U \in \mathcal{P}$ implies $f^{-1}(U) \in \mathcal{O}$. It is called a homeomorphism, if it is bijective (i.e. one-to-one) and bi-continuous (i.e. continuous with continuous inverse). \diamond

1.4 Definition. Topological manifold

A second countable topological Hausdorff space M is called a topological manifold of dimension n, if any point $x \in M$ has a neighbourhood that is homeomorphic to an open set in \mathbb{R}^{n}. The latter means that for any point $x \in M$ there exist an open set $V \subset M$ with $x \in V$, an open set $U \subset \mathbb{R}^{n}$, and a homeomorphism $f: V \rightarrow U$.
Remark. Don't worry if you are not familiar with topological spaces, these concepts will not be central to the following. Just remember that in a topological space we have the notion of open sets and concepts derived from there, like continuous functions, compactness etc. The additional conditions on the topology in the above definition of a topological manifold ensure that there are not too few open sets (Hausdorff) and not too many (second countable). Note also that the properties of being Hausdorff and second countable do not follow from the property of being locally homeomorphic to the second countable Hausdorff space \mathbb{R}^{n}, see also example 1.8 (f).

Since differentiability is a local property, we can use the fact that a manifold looks locally like a piece of \mathbb{R}^{n} to also lift the differentiable structure of \mathbb{R}^{n} to manifolds. Recall for the following definition that a map $f: V \rightarrow U$ between open sets $V \subset \mathbb{R}^{n}$ and $U \subset \mathbb{R}^{m}$ is in $C^{r}(V, U)$ or short a C^{r}-map, if it is r-times continuously differentiable. It is a C^{r}-diffeomorphism, if it is bijective, a C^{r}-map, and the inverse $f^{-1}: U \rightarrow V$ is also a C^{r}-map.

1.5 Definition. Charts

Let M be a topological manifold of dimension n. A chart on M is a pair (V, φ) of an open set $V \subset M$ and a homeomorphism $\varphi: V \rightarrow U \subset \mathbb{R}^{n}$ onto an open subset $U=\varphi(V)$ of \mathbb{R}^{n}. Charts are also called coordinate charts, because a chart (V, φ) allows one to label points $x \in V$ by "coordinate vectors" $\varphi(x) \in \mathbb{R}^{n}$.

Two charts $\left(V_{1}, \varphi_{1}\right)$ and $\left(V_{2}, \varphi_{2}\right)$ on M are called C^{r}-compatible, if either $V_{1} \cap V_{2}=\emptyset$, or if the composition

$$
\varphi_{1} \circ \varphi_{2}^{-1}: \varphi_{2}\left(V_{1} \cap V_{2}\right) \rightarrow \varphi_{1}\left(V_{1} \cap V_{2}\right)
$$

is a C^{r}-diffeomorphism of open sets of \mathbb{R}^{n}. The maps $\varphi_{1} \circ \varphi_{2}^{-1}$ and $\varphi_{2} \circ \varphi_{1}^{-1}$ are called transition maps.

Remark. Note that for any two charts $\left(V_{1}, \varphi_{1}\right)$ and $\left(V_{2}, \varphi_{2}\right)$ the transition maps $\varphi_{1} \circ \varphi_{2}^{-1}$ and $\varphi_{2} \circ \varphi_{1}^{-1}$ are necessarily homeomorphisms because φ_{1} and φ_{2} are homeomorphisms.

1.6 Definition. C^{r}-atlas

A set of pairwise C^{r}-compatible charts $\mathcal{A}=\left\{\left(V_{j}, \varphi_{j}\right) \mid j \in J\right\}$ that cover M, i.e. $M=\bigcup_{j \in J} V_{j}$, is called a C^{r}-atlas.
Two C^{r}-atlases are equivalent, if any two charts in the atlases are C^{r}-compatible.

Remark. It is straightforward to check that equivalence of atlases is really an equivalence relation. The only non-obvious property to check is transitivity. Let $\mathcal{A}_{j}, j=1,2,3$, be atlases such that \mathcal{A}_{1} and \mathcal{A}_{2} are compatible and \mathcal{A}_{2} and \mathcal{A}_{3} are compatible. To see that also \mathcal{A}_{1} and \mathcal{A}_{3} are compatible, let $\left(V_{1}, \varphi_{1}\right) \in \mathcal{A}_{1}$ and $\left(V_{3}, \varphi_{3}\right) \in \mathcal{A}_{3}$. Then

$$
\varphi_{1} \circ \varphi_{3}^{-1}: \varphi_{3}\left(V_{1} \cap V_{3}\right) \rightarrow \varphi_{1}\left(V_{1} \cap V_{3}\right)
$$

is a homeomorphism and it suffices to check differentiability locally. But for any $\left(V_{2}, \varphi_{2}\right) \in \mathcal{A}_{2}$ with $V_{1} \cap V_{2} \cap V_{3} \neq \emptyset$ we have that

$$
\varphi_{1} \circ \varphi_{3}^{-1}=\left(\varphi_{1} \circ \varphi_{2}^{-1}\right) \circ\left(\varphi_{2} \circ \varphi_{3}^{-1}\right)
$$

is the composition of two C^{r}-functions and thus itself a C^{r}-function on $\varphi_{3}\left(V_{1} \cap V_{2} \cap V_{3}\right)$.
Thus every atlas lies in a unique equivalence class of atlases.

1.7 Definition. Differentiable manifold

A topological manifold M together with an equivalence class of C^{r}-atlases is called a differentiable manifold (or more precisely a C^{r}-manifold). This equivalence class of atlases is often called a differentiable structure for M.

Remark. In view of the previous remark it suffices to provide one atlas in order to specify a differentiable manifold. More precisely, let M be a second countable Hausdorff space. Then the structure of a topological manifold and a unique differentiable structure on M are defined by providing one atlas of compatible charts, i.e. open sets $V_{i} \subset M$ with $\cup_{i} V_{i}=M$ and homeomorphisms $\varphi_{i}: V_{i} \rightarrow \varphi_{i}\left(V_{i}\right) \subset \mathbb{R}^{n}$ with $\varphi_{i} \circ \varphi_{j}^{-1} \in C^{r}$ for all i, j. Moreover, on a second countable differentiable manifold one can always find a countable atlas ${ }^{2}$
1.8 Examples. (a) Any open subset O of euclidean space \mathbb{R}^{n} is a differentiable manifold in a natural sense: just pick the single chart $(O, i d)$ as an atlas. Indeed, any open subset O of a differentiable manifold M is again a differentiable manifold in a natural sense: just restrict the charts of M to $O \subset M$.
(b) The unit circle $S^{1}:=\left\{x \in \mathbb{R}^{2} \mid\|x\|=1\right\} \subset \mathbb{R}^{2}$ with the relative topology ${ }^{3}$ is a 1-dimensional topological manifold. The four charts $\left(V_{j}, \varphi_{j}\right)_{j=1, \ldots, 4}$ with

$$
\begin{array}{ll}
\varphi_{1}: V_{1}=\left\{x_{1}>0\right\} \rightarrow(-1,1), & x \mapsto \varphi_{1}(x)=x_{2} \\
\varphi_{2}: V_{2}=\left\{x_{1}<0\right\} \rightarrow(-1,1), & x \mapsto \varphi_{2}(x)=x_{2} \\
\varphi_{3}: V_{3}=\left\{x_{2}>0\right\} \rightarrow(-1,1), & x \mapsto \varphi_{3}(x)=x_{1} \\
\varphi_{4}: V_{4}=\left\{x_{2}<0\right\} \rightarrow(-1,1), & x \mapsto \varphi_{4}(x)=x_{1}
\end{array}
$$

provide the local homeomorphisms to \mathbb{R} and define a differentiable structure on S^{1}.
(c) Note that definition 1.7 does not require M to be embedded into some ambient space, like S^{1} into \mathbb{R}^{2}. We can, for example, define the "same" differentiable manifold S^{1} by equipping

[^1]the topological space $\mathbb{R} / \mathbb{Z}^{4}$
$$
\varphi_{1}: \mathbb{R} / \mathbb{Z} \backslash\{[0]\} \rightarrow(0,1) \quad \text { and } \quad \varphi_{2}: \mathbb{R} / \mathbb{Z} \backslash\left\{\left[\frac{1}{2}\right]\right\} \rightarrow\left(-\frac{1}{2}, \frac{1}{2}\right)
$$
that $\operatorname{map}[x] \in \mathbb{R} / \mathbb{Z}$ to its representative in $[0,1)$ or $\left[-\frac{1}{2}, \frac{1}{2}\right)$ respectively. More precisely, the manifold obtained in this way is diffeomorphic to S^{1}, cf. definition 1.13 .
(d) The n^{2} elements of an $n \times n$-matrix define a point in $\mathbb{R}^{n^{2}}$. We can thus identify the set Mat (n) of $n \times n$-matrices with $\mathbb{R}^{n^{2}}$ and thereby obtain for $\operatorname{Mat}(n)$ the structure of a differentiable manifold. The invertible matrices A, i.e. $\{A \in \operatorname{Mat}(n) \mid \operatorname{det} A \neq 0\}$, form an open subset of $\operatorname{Mat}(n)$ and thus, according to (a), again a differentiable manifold, the group $G L(n)$.
(e) $M=\left\{x \in \mathbb{R}^{2}| | x_{1}\left|=\left|x_{2}\right|\right\}\right.$ with the induced topology is not a topological manifold. This is because there is no connected open set containing $(0,0) \in M$ that can be mapped homeomorphically to an open connected set
 (i.e. an interval) in \mathbb{R}. To see this note
that every connected open set containing $(0,0) \in M$ dissociates into four disconnected pieces when removing the point $(0,0)$, while an open interval in \mathbb{R} dissociates into two pieces when removing a single point. But the number of connected components is invariant under homeomorphisms.
(f) The requirement that the topology of a manifold is Hausdorff is not redundant, i.e. it does not follow from being locally homeomorphic to \mathbb{R}^{n} (whose topology is indeed Hausdorff). Example: Let $M=(\mathbb{R} \backslash\{0\}) \cup\left\{p_{1}\right\} \cup\left\{p_{2}\right\}$ be equipped with the two charts
\[

\varphi_{j}: \mathbb{R} \backslash\{0\} \cup\left\{p_{j}\right\} \rightarrow \mathbb{R}, \quad \varphi_{j}(x)= $$
\begin{cases}x & \text { if } x \neq p_{j} \\ 0 & \text { if } x=p_{j}\end{cases}
$$
\]

Then the transition maps $\varphi_{1} \circ \varphi_{2}^{-1}=\varphi_{2} \circ \varphi_{1}^{-1}=\left.\mathrm{id}\right|_{\mathbb{R} \backslash\{0\}}$ are diffeomorphisms, but the induced topology ${ }^{5}$ on M turns φ_{1} and φ_{2} into homeomorphisms but it is not Hausdorff: $\left\{p_{1}\right\}$ and $\left\{p_{2}\right\}$ have no disjoint neighbourhoods. Note that in the induced topology a set $B \subset M$ is open, iff there exist open sets $O_{1}, O_{2} \subset \mathbb{R}$ such that $B=\varphi_{1}^{-1}\left(O_{1}\right) \cup \varphi_{2}^{-1}\left(O_{2}\right)$.
(g) Given two manifolds M_{1} and M_{2} one can form the product manifold $M_{1} \times M_{2}$. To this end one equips the cartesian product $M_{1} \times M_{2}$ with the product topology and then covers this space with product charts of the form $\left(V_{1}, \varphi_{1}\right) \times\left(V_{2}, \varphi_{2}\right)=\left(V_{1} \times V_{2},\left(\varphi_{1}, \varphi_{2}\right)\right)$, where $\left(V_{1}, \varphi_{1}\right)$ and $\left(V_{2}, \varphi_{2}\right)$ are charts from atlases of M_{1} resp. M_{2}.

[^2]1.9 Remarks. (a) In the physics literature a chart is often called a local coordinate system. The inverse φ^{-1} of a chart φ is also called a local parametrisation.
(b) The fact that the differentiable structure of a manifold is defined through an equivalence class of atlases, and not through a single one, shows that there are no preferred coordinate charts on a manifold. All coordinate systems compatible with the differentiable structure are on an equal footing.
(c) Note that a differentiable manifold does not yet have a metric structure. Distances between points are not defined.
1.10 Convention. From now on, by a chart on a differentiable manifold we always mean a chart that is compatible with the differentiable structure, i.e. a chart from an atlas within the equivalence class of atlases defining the differentiable structure.

1.11 Definition. Differentiable maps

Let M_{1} and M_{2} be C^{r}-manifolds with $\operatorname{dim} M_{1}=n_{1}$ and $\operatorname{dim} M_{2}=n_{2}$. A continuous map $f: M_{1} \rightarrow M_{2}$ is p-times differentiable (where $p \leq r$), if for any chart (φ_{1}, V_{1}) on M_{1} and for any chart (φ_{2}, V_{2}) on M_{2} the map

$$
\varphi_{2} \circ f \circ \varphi_{1}^{-1}: \mathbb{R}^{n_{1}} \supset \varphi_{1}\left(V_{1} \cap f^{-1}\left(V_{2}\right)\right) \rightarrow \mathbb{R}^{n_{2}}
$$

is p-times continuously differentiable. The set of all p-times differentiable functions $f: M_{1} \rightarrow M_{2}$ is denoted by $C^{p}\left(M_{1}, M_{2}\right)$.

1.12 Convention. Whenever we speak about a differentiable manifold in the following, we always mean a C^{r}-manifold with $r \geq 1$ large enough for the statements in the corresponding context to make sense. The notion smooth manifold is synonymous for C^{∞}-manifold.
1.13 Definition. C^{r}-diffeomorphisms and diffeomorphic manifolds

A C^{r}-diffeomorphism f of two differentiable manifolds M_{1} and M_{2} is a bijection $f: M_{1} \rightarrow M_{2}$ such that $f \in C^{r}\left(M_{1}, M_{2}\right)$ and $f^{-1} \in C^{r}\left(M_{2}, M_{1}\right)$. Two differentiable manifolds M_{1} and M_{2} are called diffeomorphic, if there exists a diffeomorphism $f: M_{1} \rightarrow M_{2}$.
1.14 Example. Every chart (V, φ) of a manifold M is a diffeomorphism of the manifold $V \subset M$ to $\varphi(V) \subset \mathbb{R}^{n}$ (cf. example 1.8 (a)).

1 Manifolds

1.15 Remark. In the exercises it is shown that to a given topological manifold one can find different differentiable structures that are nevertheless diffeomorphic.

Heuristically it is clear that a sufficiently smooth boundary of an n-dimensional differentiable manifold is itself a $(n-1)$-dimensional differentiable manifold. As an example think of the circle S^{1} (a one-dimensional manifold) being the boundary of the unit disk in \mathbb{R}^{2} (a two-dimensional manifold). The precise definition of a manifold with boundary rests on a very simple idea: instead of using \mathbb{R}^{n} as the "local model", we use the half-space

$$
\mathbb{R}_{+}^{n}:=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq 0\right\} \quad \text { with }(n-1) \text {-dimensional boundary } \quad \partial \mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1}=0\right\}
$$

That is, charts now map into \mathbb{R}_{+}^{n} instead of \mathbb{R}^{n}. Recall that by definition a set $U \subset \mathbb{R}_{+}^{n}$ is open with respect to the induced topology (also called relatively open), if there exists an open set $\tilde{U} \subset \mathbb{R}^{n}$ such that $U=\tilde{U} \cap \mathbb{R}_{+}^{n}$.
1.16 Definition. Topological manifold with boundary

A second-countable topological Hausdorff space M is called a topological manifold with boundary of dimension n, if any point $x \in M$ has a neighbourhood that is homeomorphic to an (relatively!) open set in \mathbb{R}_{+}^{n}.
A chart for a topological manifold with boundary M is a pair (V, φ), where $V \subset M$ is an open set and $\varphi: V \rightarrow \varphi(V) \subset \mathbb{R}_{+}^{n}$ a homeomorphism.

In order to define also differentiable structures on manifolds with boundary, we first have to clarify what it means for a function defined on \mathbb{R}_{+}^{n} to be differentiable at a point x on the boundary $\partial \mathbb{R}_{+}^{n}$: we say that a map $f: U \rightarrow \mathbb{R}^{m}$ on a relatively open subset of $U \subset \mathbb{R}_{+}^{n}$ is r-times continuously differentiable, if there exist an open set $\tilde{U} \subset \mathbb{R}^{n}$ containing U and a r-times continuously differentiable map $\tilde{f}: \tilde{U} \rightarrow \mathbb{R}^{m}$, such that $\left.\tilde{f}\right|_{U}=f$.
From here on C^{r}-compatibility and atlases can be defined as in definition 1.5 and 1.6 also for charts taking values in \mathbb{R}_{+}^{n}.

1.17 Definition. Differentiable manifold with boundary

A topological manifold with boundary M together with an equivalence class of C^{r}-atlases is called a differentiable manifold with boundary (or more precisely a C^{r}-manifold with boundary). The boundary of M is

$$
\partial M:=\bigcup_{i} \varphi_{i}^{-1}\left(\varphi_{i}\left(V_{i}\right) \cap \partial \mathbb{R}_{+}^{n}\right)
$$

where $\left\{\left(V_{i}, \varphi_{i}\right)\right\}$ is an atlas.

1.18 Remark. Note that ∂M is well defined, since for any diffeomorphism $f: \mathbb{R}_{+}^{n} \supset V \rightarrow U \subset$ \mathbb{R}_{+}^{n} of relatively open sets $V, U \subset \mathbb{R}_{+}^{n}$ (and thus, in particular, for the transition maps) it holds that $x \in V \cap \partial \mathbb{R}_{+}^{n}$ if and only if $f(x) \in \partial \mathbb{R}_{+}^{n / 6}$. To see this, let $x \in V \cap\left(\mathbb{R}_{+}^{n} \backslash \partial \mathbb{R}_{+}^{n}\right)$ be a point in the interior. By Taylor's theorem $f(x+h)=f(x)+\left.D f\right|_{x} h+o(\|h\|)$, and thus, since the differential $\left.D f\right|_{x}$ at x is an isomorphism, there exists an open neighbourhood O of x such that $f(O)$ is open in \mathbb{R}^{n}. Hence, $f(x) \in U \cap\left(\mathbb{R}_{+}^{n} \backslash \partial \mathbb{R}_{+}^{n}\right)$.
1.19 Example. The closed interval $M=[a, b]$ with the charts $\left(V_{1}=[a, b), \varphi_{1}: x \mapsto x-a\right)$, and $\left(V_{2}=(a, b], \varphi_{2}: x \mapsto b-x\right)$, is a differentiable manifold with boundary $\partial M=\{a\} \cup\{b\}$. \diamond
1.20 Remark. The boundary ∂M of a manifold with boundary as just defined can differ from its topological boundary as a subset of some other topological space. For example, as a manifold the circle S^{1} has no boundary, but as a subset of the plane \mathbb{R}^{2} the topological boundary of S^{1} is S^{1} itself.
1.21 Consequence. Let M be a differentiable manifold with boundary ∂M. Then $M \backslash \partial M$ and ∂M inherit the structure of manifolds without boundary of dimension $\operatorname{dim}(M \backslash \partial M)=n$ resp. $\operatorname{dim}(\partial M)=n-1$.

Proof. Let $\left(V_{i}, \varphi_{i}\right)$ with $\varphi_{i}: V_{i} \rightarrow \mathbb{R}_{+}^{n}$ be an atlas for M. Then

$$
\left(V_{i} \cap(M \backslash \partial M),\left.\varphi_{i}\right|_{V_{i} \cap(M \backslash \partial M)}\right)
$$

is an atlas for $M \backslash \partial M$ where none of the charts hits a boundary point in $\partial \mathbb{R}_{+}^{n}$. To obtain an atlas for ∂M, put $U_{i}=V_{i} \cap \partial M$ and $\tilde{\varphi}_{i}: U_{i} \rightarrow \partial \mathbb{R}_{+}^{n} \cong \mathbb{R}^{n-1}, \tilde{\varphi}_{i}=\left.\varphi_{i}\right|_{U_{i}}$. Then $\left(U_{i}, \tilde{\varphi}_{i}\right)$ is an atlas for ∂M.
1.22 Convention. Note that differentiable manifolds without boundary as in definition 1.7 can be seen as a special case of differentiable manifolds with boundary as in definition 1.17, where the boundary just happens to be empty. Therefore, with the exception of the beginning of chapter 2 , we will not distinguish the two concepts: a "manifold" may have or may not have a boundary. \diamond

German nomenclature

```
atlas = Atlas
chart = Karte
continuous = stetig
diffeomorphism = Diffeomorphismus
equivalent = äquivalent
homeomorphism = Homöomorphismus
open set = offene Menge
topology = Topologie
```

boundary $=$ Rand
compatible $=$ verträglich
countable $=$ abzählbar
differentiable $=$ differenziebar
euclidian space $=$ Euklidischer Raum
manifold $=$ Mannigfaltigkeit
topological space $=$ topologischer Raum
transition map $=$ Kartenwechsel

[^3]
2 The tangent bundle

For an n-dimensional manifold M embedded into an ambient \mathbb{R}^{m}, like the sphere S^{2} embedded in \mathbb{R}^{3}, it is easy to picture the tangent space at any point $x \in M$ as an n-dimensional euclidean space sitting in \mathbb{R}^{m} with the origin attached to the point x and being "tangent" to M. While this is a very useful geometric picture to keep in mind, it does not provide a mathematical definition of tangent spaces for general manifolds. There are indeed different but in the end equivalent approaches to such a general definition of tangent vectors and spaces, some more geometric, others more algebraic. We will start with a geometric approach based on the idea that a tangent vector to a manifold can be understood as a velocity vector associated with a trajectory on the manifold. To simplify the discussion, we will initially define tangent vectors and tangent spaces only for manifolds without boundary.
A C^{1}-curve on a differentiable manifold M is a C^{1}-map $c: I \rightarrow M$ from an open interval $I \subset \mathbb{R}$ into M, i.e. a map $c \in C^{1}(I, M)$. For any $x \in M$ let

$$
\begin{equation*}
C_{x}:=\left\{c \in C^{1}(I, M) \mid I \subset \mathbb{R} \text { open, } 0 \in I, c(0)=x\right\}, \tag{2.1}
\end{equation*}
$$

which will be called the set of curves through x for short. Two curves c_{1} and c_{2} in C_{x} are said to be equivalent, $c_{1} \sim c_{2}$ for short, if in one (and thus in any) chart (V, φ) with $x \in V$ it holds that ${ }^{1}$

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi \circ c_{1}\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi \circ c_{2}\right)\right|_{t=0} \tag{2.2}
\end{equation*}
$$

Thus two curves are equivalent if they pass through x with the same "velocity". The fact that (2.2) holds either for all or for no chart follows from the chain rule: Let φ_{1} and φ_{2} be charts, then

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{1} \circ c\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{1} \circ \varphi_{2}^{-1} \circ \varphi_{2} \circ c\right)\right|_{t=0}=\left.\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{2} \circ c\right)\right|_{t=0} \tag{2.3}
\end{equation*}
$$

Thus, when changing the coordinate system, the velocity vector $\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(\varphi_{2} \circ c\right)\right|_{t=0}$ of a curve c at x with respect to a chart φ_{2} is mapped to the velocity vector $\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(\varphi_{1} \circ c\right)\right|_{t=0}$ with respect to the chart φ_{1} by acting on it with the Jacobian $D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)$ of the transition function evaluated at the point $\varphi_{2}(x)$. Being the Jacobian of a diffeomorphism, $D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)$ is an isomorphism. Moreover, it is independent of the curve c and thus the equality (2.2) holds either in all charts or in none.

[^4]
2.1 Definition. Tangent vectors and tangent spaces

A tangent vector v to a differentiable manifold M at a point $x \in M$ is an equivalence class $[c]_{x}$ of curves $c \in C_{x}$ under the equivalence relation 2.2 . The set of all tangent vectors to M at x is called the tangent space to M at x and denoted by $T_{x} M$.

2.2 Proposition. The tangent space is a vector space

For any chart (V, φ) with $x \in V$ the map

$$
T_{x} \varphi: T_{x} M \rightarrow \mathbb{R}^{n},\left.\quad[c]_{x} \mapsto \frac{\mathrm{~d}}{\mathrm{~d} t}(\varphi \circ c)\right|_{t=0}
$$

is well defined and a bijection. Moreover, the vector space structure induced by $\left(T_{x} \varphi\right)^{-1}: \mathbb{R}^{n} \rightarrow$ $T_{x} M$ on $T_{x} M$ is independent of φ and thus turns $T_{x} M$ in a natural way into a real vector space of dimension $\operatorname{dim} T_{x} M=n=\operatorname{dim} M$.

Proof. The map $T_{x} \varphi$ is well defined (meaning that its value does not depend on the chosen representative $c \in[c]_{x}$) and injective by definition of $T_{x} M$. To see that it is also surjective, note that for any given vector $w \in \mathbb{R}^{n}$ the curve $c(t):=\varphi^{-1}(\varphi(x)+t w)$ (defined on a sufficiently small interval around zero) satisfies

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}(\varphi \circ c)\right|_{t=0}=w
$$

For the last statement let φ_{1} and φ_{2} be charts at x. Then with 2.3 we have

$$
T_{x} \varphi_{1}\left([c]_{x}\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{1} \circ c\right)\right|_{t=0}=\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\left.\varphi_{2}(x) \frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{2} \circ c\right)\right|_{t=0}=\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)} T_{x} \varphi_{2}\left([c]_{x}\right)}
$$

and thus also

$$
T_{x} \varphi_{1}^{-1}=T_{x} \varphi_{2}^{-1}\left(\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)}\right)^{-1}
$$

where $\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)}$ is a vector space isomorphism of \mathbb{R}^{n}. Hence, for $v, u \in T_{x} M$ we have

$$
\begin{aligned}
v+\varphi_{1} u & :=T_{x} \varphi_{1}^{-1}\left(T_{x} \varphi_{1}(v)+T_{x} \varphi_{1}(u)\right) \\
& =T_{x} \varphi_{1}^{-1}\left(\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)} T_{x} \varphi_{2}(v)+\left.D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)} T_{x} \varphi_{2}(u)\right) \\
& =\left.T_{x} \varphi_{1}^{-1} D\left(\varphi_{1} \circ \varphi_{2}^{-1}\right)\right|_{\varphi_{2}(x)}\left(T_{x} \varphi_{2}(v)+T_{x} \varphi_{2}(u)\right) \\
& =T_{x} \varphi_{2}^{-1}\left(T_{x} \varphi_{2}(v)+T_{x} \varphi_{2}(u)\right) \\
& =v+\varphi_{2} u
\end{aligned}
$$

2.3 Remark. According to the previous proposition, every chart (V, φ) for M with $x \in V$ yields a vector space isomorphism $T_{x} \varphi: T_{x} M \rightarrow \mathbb{R}^{n}$. In the following we will treat $T_{x} \varphi$ also notationally as a linear map between vector spaces and write $T_{x} \varphi v$ instead of $T_{x} \varphi(v)$.
The components v^{i} of $v \in T_{x} M$ with respect to φ are by definition

$$
v^{i}:=\left\langle e_{i}, T_{x} \varphi v\right\rangle_{\mathbb{R}^{n}} \quad \text { and thus } \quad T_{x} \varphi v=\sum_{i=1}^{n} v^{i} e_{i}
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ denotes the canonical basis of \mathbb{R}^{n}. Clearly the components v^{i} of a tangent vector v depend on the chosen chart φ. Since there are no preferred charts on a general manifold M (in physics one would often say that there is no preferred coordinate system), there is also no preferred basis of $T_{x} M$ and also no natural scalar product. Moreover, there is no canonical way to identify tangent spaces $T_{x} M$ and $T_{y} M$ at different points $x \neq y$.
However, in the special case of an open set $M \subset \mathbb{R}^{n}$ we can identify $T_{x} M$ for any $x \in M$ in a natural way with \mathbb{R}^{n} using the canonical chart $T_{x} \mathrm{id}$.

2.4 Remark. Derivations at points

An alternative, more algebraic way to define tangent vectors is via derivations. Given a tangent vector $v \in T_{x} M$ at $x \in M$, i.e. an equivalence class of curves through x, one can define the directional derivative of a function $f \in C^{1}(M, \mathbb{R})=: C^{1}(M)$ at the point x in the direction v by

$$
D_{v}(f):=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(f \circ c_{v}\right)\right|_{t=0}
$$

where $c_{v} \in v$ is any curve in the equivalence class v. This is well defined, since using a chart (V, φ) we find that (again by the chain rule for functions on euclidean spaces) that

$$
\begin{align*}
D_{v}(f) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(f \circ c_{v}\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(f \circ \varphi^{-1}\right) \circ\left(\varphi \circ c_{v}\right)\right)\right|_{t=0} \\
& =\left.\left.D\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi \circ c_{v}\right)\right|_{t=0} \\
& =\left\langle\left.\nabla\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)}, T_{x} \varphi v\right\rangle_{\mathbb{R}^{n}} \tag{2.4}
\end{align*}
$$

is given by the directional derivative of the function $f \circ \varphi^{-1}: \mathbb{R}^{n} \supset \varphi(V) \rightarrow \mathbb{R}$ in the direction $T_{x} \varphi v \in \mathbb{R}^{n}$, where the latter depends only on v and not on the representative c_{v}.
Moreover, this computation also shows that the map $C^{1}(M) \rightarrow \mathbb{R}, f \mapsto D_{v}(f)$, is linear and satisfies the product rule, i.e. that for $f, g \in C^{1}(M)$ we have

$$
\begin{equation*}
D_{v}(f g)=D_{v}(f) g(x)+f(x) D_{v}(g) \tag{2.5}
\end{equation*}
$$

On a smooth manifold, a linear map $D: C^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at $x \in M$, if it satisfies 2.5). The set of derivations at a point x is naturally a real vector space with $(D+\tilde{D})(f):=D(f)+\tilde{D}(f)$ and $(a D)(f):=a D(f)$ for $a \in \mathbb{R}$. We have just shown that every tangent vector $v \in T_{x} M$ defines a derivation D_{v} at x and that the map $v \mapsto D_{v}$ is linear and injective. One can show that this map is also surjective and thus defines a vector space isomorphism between $T_{x} M$ and the space of derivations at x. Hence one can naturally identify tangent vectors at x with derivations at x. Actually, the latter concept is often taken as the definition of a tangent vector.

With the previous two remarks and proposition 2.2 in mind, the following notation for coordinate bases of tangent spaces appears natural.

2.5 Definition. Coordinate bases

Let (V, φ) be a chart on M and let $x \in V$. Then $\left(\partial_{\varphi_{1}}, \ldots, \partial_{\varphi_{n}}\right)$ with

$$
\partial_{\varphi_{j}}:=\left(T_{x} \varphi\right)^{-1} e_{j} \in T_{x} M \quad \text { for } j=1 \ldots, n
$$

is called the coordinate basis of $T_{x} M$ with respect to the coordinate chart φ. Note that in the present context $\partial_{\varphi_{j}}$ does not denote a differential operator, but a tangent vector. One can "act" by a tangent vector on a function by taking the directional derivative in the direction of the vector, however.
2.6 Notation. When emphasising the "coordinate aspect" of a chart we will often use the letter q instead of φ for a coordinate chart $q: V \rightarrow \mathbb{R}^{n}$. Correspondingly the coordinate basis of $T_{x} M$ is then $\left(\partial_{q_{1}}, \ldots, \partial_{q_{n}}\right)$.
Note that the coordinate tangent vector $\partial_{q_{j}} \in T_{x} M$ is the tangent vector defined by the curve

$$
c:(-\varepsilon, \varepsilon) \rightarrow M, \quad t \mapsto q^{-1}\left(\left(q_{1}(x), \ldots, q_{j}(x)+t, \ldots, q_{n}(x)\right)\right)
$$

2.7 Remark. The tangent space at a boundary point

Up to now we defined tangent spaces only at interior points of a manifold. Our definition of tangent vectors in terms of equivalence classes of curves through a point needs to be slightly modified in order to cope with points on the boundary. This could be done by considering also curves that start or end at the boundary point, i.e. by replacing C_{x} in (2.1) by

$$
\tilde{C}_{x}:=\left\{c \in C^{1}(I, M) \mid I=[0, \varepsilon) \text { or } I=(-\varepsilon, 0] \text { for some } \varepsilon>0, c(0)=x\right\} .
$$

Alternatively we could take the algebraic viewpoint as a definition and identify the tangent space at a boundary point $x \in \partial M$ with the space of derivations at that point. We skip the details and just note that all the statements of this section naturally carry over to tangent spaces at boundary points. In particular, the tangent space at a boundary point of an n-dimensional manifold with boundary is also an n-dimensional real vector space that can be identified (non-uniquely) with \mathbb{R}^{n} using a chart containing that point.

2.8 Definition. The tangent bundle

The tangent bundle $T M$ of M is the disjoint union of the tangent spaces
$T M:=\bigcup_{x \in M}\left(\{x\} \times T_{x} M\right)=\left\{(x, v) \mid x \in M, v \in T_{x} M\right\}$
Points in $T M$ are thus pairs (x, v) with $x \in M$ (the base point) and $v \in T_{x} M$ (the tangent vector). The $\operatorname{map} \pi_{M}: T M \rightarrow M$ that maps a point (x, v) in the total space $T M$ to the point x in the base space M is called the projection onto the base space. The second component of the pre-image $\pi_{M}^{-1}(\{x\})=$
 $\{x\} \times T_{x} M$ is called the fibre over $x \in M$.
2.9 Example. For an open set $M \subset \mathbb{R}^{n}$ we can identify $T M$ in a natural way with $M \times \mathbb{R}^{n}$. Since $M \times \mathbb{R}^{n}$ is an open subset of $\mathbb{R}^{2 n}$ and thus a manifold, we can in this case equip the tangent bundle $T M$ in a natural way with the structure of a manifold. We will soon see that also for general differentiable manifolds of dimension n the tangent bundle $T M$ is again a manifold of dimension $2 n$.

We now define the derivative (called differential) of a smooth map between differentiable manifolds. Recall that for a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the differential of f at a point $x \in \mathbb{R}^{n}$ is the linear approximation $\left.D f\right|_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to f at x. Linear maps from \mathbb{R}^{n} to \mathbb{R}^{m} are given by matrices and the differential $\left(\left.D f\right|_{x}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(x)$ is the Jacobian matrix. For a map $f: M_{1} \rightarrow M_{2}$ between manifolds the linear approximation to f at $x \in M_{1}$ is a map between the tangent spaces $T_{x} M_{1}$ and $T_{f(x)} M_{2}$. With our definition of tangent vectors as equivalence classes of curves the following definition is very natural.
2.10 Definition. The differential of a smooth map and the pushforward

Let $f \in C^{1}\left(M_{1}, M_{2}\right)$. Its differential

$$
D f: T M_{1} \rightarrow T M_{2}
$$

maps the point $\left(x,[c]_{x}\right) \in T M_{1}$ to the point $\left(f(x),[f \circ c]_{f(x)}\right) \in T M_{2}$, i.e.

$$
D f\left(\left(x,[c]_{x}\right)\right):=\left(f(x),[f \circ c]_{f(x)}\right) .
$$

The differential $D f$ of a smooth map is often also called the pushforward of tangent vectors under f, as it "pushes" tangent vector on M_{1} to tangent vectors on M_{2}. Other notations for $D f$ are $\mathrm{d} f, T f$ or f_{*}.

2.11 Proposition. Linearity of the differential

The differential $D f$ of a function $f \in C^{1}\left(M_{1}, M_{2}\right)$ is well defined and its restriction

$$
\left.D f\right|_{x}: T_{x} M_{1} \rightarrow T_{f(x)} M_{2},\left.\quad v \mapsto D f\right|_{x} v:=(D f(x, v))_{2},
$$

to a single tangent space is a linear map. Here $(D f(x, v))_{2}$ denotes the second component of $D f(x, v) \in\{f(x)\} \times T_{f(x)} M_{2}$.

Proof. It is clear that f maps C^{1}-curves c in M_{1} to C^{1}-curves $f \circ c$ in M_{2}. By using charts it is easy to see that equivalent curves through $x \in M_{1}$ are mapped to equivalent curves through $f(x) \in M_{2}$ and that $\left.D f\right|_{x}: T_{x} M_{1} \rightarrow T_{f(x)} M_{2}$ is a linear map:

$$
\begin{align*}
(D f(x, v))_{2} & =\left.T_{f(x)} \varphi_{2}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\varphi_{2} \circ f \circ c_{v}\right)\right|_{t=0}=\left.T_{f(x)} \varphi_{2}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\varphi_{2} \circ f \circ \varphi_{1}^{-1} \circ \varphi_{1} \circ c_{v}\right)\right|_{t=0} \\
& =\left.\left.T_{f(x)} \varphi_{2}^{-1} D\left(\varphi_{2} \circ f \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(x)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\varphi_{1} \circ c_{v}\right)\right|_{t=0} \tag{2.6}\\
& =\left.T_{f(x)} \varphi_{2}^{-1} D\left(\varphi_{2} \circ f \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(x)} T_{x} \varphi_{1} v .
\end{align*}
$$

Note that for $f: \mathbb{R}^{n} \supset M \rightarrow \mathbb{R}^{m}$ using the canonical chart id it is common to identify the differential $\left.D f\right|_{x}=\left.\left(T_{f(x)} \mathrm{id}^{-1}\right) D\left(\mathrm{id} \circ f \circ \mathrm{id}^{-1}\right)\right|_{x}\left(T_{x} \mathrm{id}\right)$ with the Jacobian $\left.D\left(\mathrm{id} \circ f \circ \mathrm{id}^{-1}\right)\right|_{x}$.

2.12 Definition. The tangent bundle as a manifold

We can equip the tangent bundle $T M$ with the structure of a differentiable manifold of dimension $2 n$ by covering it with the natural atlas: Let $\mathcal{A}=\left\{\left(V_{i}, \varphi_{i}\right)\right\}$ be an atlas for M, then

$$
T \mathcal{A}:=\left\{\left(T V_{i}, D \varphi_{i}\right)\right\}
$$

is an atlas of $T M$, where the charts

$$
\begin{equation*}
D \varphi_{i}: T M \supset T V_{i} \rightarrow D \varphi_{i}\left(T V_{i}\right)=\varphi_{i}\left(V_{i}\right) \times \mathbb{R}^{n} \subset T \mathbb{R}^{n}=\mathbb{R}^{2 n} \tag{2.7}
\end{equation*}
$$

map into $\mathbb{R}^{2 n}$. Note that in this case also the topology on $T M$ is defined by the charts $D \varphi_{i}{ }^{2} \diamond$

2.13 Consequence. The differential of a smooth map is smooth

Since fibre wise $\left.D \varphi\right|_{x}=T_{x} \varphi$, (2.6) implies that the differential $D f: T M_{1} \rightarrow T M_{2}$ of a smooth map is itself a smooth map between manifolds, cf. definition 1.11 and the following diagram

$$
\begin{array}{cl}
T M_{1} \supset T V_{1} \quad \stackrel{D f}{\rightarrow} & T V_{2} \subset T M_{2} \\
D \varphi_{1}=\left(\varphi_{1}, T \varphi_{1}\right) \downarrow & \\
\varphi_{1}\left(V_{1}\right) \times \mathbb{R}^{n} \xrightarrow{D\left(\varphi_{2} \circ f \circ \varphi_{1}^{-1}\right)} & \downarrow D \varphi_{2}=\left(\varphi_{2}, T \varphi_{2}\right) \\
\varphi_{2}\left(V_{2}\right) \times \mathbb{R}^{m} .
\end{array}
$$

[^5]Remark. In classical mechanics the configuration space is usually a manifold M. Then the tangent bundle $T M$ corresponds to the space of configurations and velocities, i.e. a point $y \in T M$, $y=(x, v)$ is a pair of a configuration $x=\pi_{M} y$ and a velocity $v \in T_{x} M$. We will see that the Lagrangian is a function on $T M$ (but not the Hamiltonian!).
2.14 Remark. Locally $T M$ is diffeomorphic to $M \times \mathbb{R}^{n}$, since every bundle chart yields such a diffeomorphism, cf. (2.7). However, globally $T M$ and $M \times \mathbb{R}^{n}$ need not be diffeomorphic. \diamond

2.15 Definition. Parallelisable manifolds

A differentiable manifold M is called parallelisable (and $T M$ trivialisable) if there exists a diffeomorphism $\phi: T M \rightarrow M \times \mathbb{R}^{n}$ such that $\left.\phi\right|_{T_{x} M}: T_{x} M \rightarrow\{x\} \times \mathbb{R}^{n}$ is a vector space isomorphism for all $x \in M$.
The terminology is motivated by the fact that such a trivialisation ϕ allows for an identification of different tangent spaces,

$$
T_{x} M \stackrel{\leftrightarrow}{\leftrightarrow}\{x\} \times \mathbb{R}^{n} \stackrel{\cong}{\cong}\{y\} \times \mathbb{R}^{n} \stackrel{\leftrightarrow}{\leftrightarrow} T_{y} M .
$$

Note that this identification is not canonical but depends on the choice of ϕ.

2.16 Proposition. The chain rule

For differentiable maps $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ between differentiable manifolds the chain rule

$$
D(g \circ f)=D g \circ D f
$$

holds.
Proof. $D(g \circ f)\left([c]_{x}\right)=[g \circ f \circ c]_{g \circ f(x)}=D g\left([f \circ c]_{f(x)}\right)=D g\left(D f\left([c]_{x}\right)\right)$.

2.17 Definition. Immersions, submersions, embeddings

Let M_{1} and M_{2} be differentiable manifolds.
(a) $f: M_{1} \rightarrow M_{2}$ is called an immersion or immersive, if $f \in C^{1}$ and $\left.D f\right|_{x}$ is injective for all $x \in M_{1}$.
(b) $f: M_{1} \rightarrow M_{2}$ is called a submersion or submersive, if $f \in C^{1}$ and $\left.D f\right|_{x}$ is surjective for all $x \in M_{1}$.
(c) $f: M_{1} \rightarrow M_{2}$ is called an embedding, if f is an injective immersion that is also a homeomorphism onto its range.
2.18 Examples. Let $M_{1}=\mathbb{R}^{n}$ and $M_{2}=\mathbb{R}^{m}$.
(a) Let $n<m$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)$. Then the $m \times n$ matrix

$$
D f \equiv\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & 1 \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right)
$$

has full rank equal to n and is therefore injective. Hence, f is an immersion. Moreover, the map f is injective and continuously invertible on its range and therefore an embedding.
(b) Let $n>m$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)$. Then the $m \times n$-matrix

$$
D f \equiv\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & \vdots & & \vdots \\
\vdots & & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & 1 & 0 & \cdots & 0
\end{array}\right)
$$

has full rank equal to m and is therefore surjective. Hence, f is a submersion.
(c) Let $n=1, m>1$, and $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ a smooth curve. The map f is immersive iff its velocity vector satisfies $f^{\prime}(t) \neq 0$ for all $t \in \mathbb{R}$. If the curve intersects itself, i.e. $f(t)=f(s)$ for $t \neq s$, then f is not an embedding.

2.19 Definition. Submanifolds

Let M be a n-dimensional differentiable manifold. Then $N \subset M$ is called a k-dimensional submanifold of M if for every $x \in N$ there exists a chart (V, φ) for M with

$$
\varphi(y)=(q_{1}, \ldots, q_{k}, \underbrace{0, \ldots, 0}_{n-k}) \quad \text { for all } y \in N \cap V
$$

2.20 Remark. Note that a k-dimensional submanifold is, in particular, a k-dimensional manifold: the charts in definition 2.21 become charts for N by dropping the last $n-k$ components.
2.21 Proposition. The following assertions are equivalent:
(a) $N \subset M$ is a k-dimensional submanifold.
(b) N is locally the image of an embedding of a piece of \mathbb{R}^{k}. More precisely, for every point $x \in N$ there exists an (relatively) open neighbourhood $V \subset N$ of x, an open set $U \subset \mathbb{R}^{k}$, and an embedding

$$
f: U \rightarrow M \quad \text { with } \quad f(U)=V
$$

(c) N is locally a level set of a submersion into \mathbb{R}^{n-k}. More precisely, for every $x \in N$ there exist an open neighbourhood $V \subset M$ of x and a submersion $F: V \rightarrow \mathbb{R}^{n-k}$ such that

$$
N \cap V=\{y \in V \mid F(y)=0\}
$$

Proof. The proof is a somewhat tedious application of the inverse function theorem resp. of the implicit function theorem.
2.22 Example. The sphere $S^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ is a two-dimensional submanifold of \mathbb{R}^{3}. This can be seen most easily by using condition (c) above. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}, x \mapsto\|x\|^{2}-1$. Then F is smooth, $\{F(x)=0\}=S^{2}$, and $\left.D F\right|_{x}=\langle 2 x, \cdot\rangle_{\mathbb{R}^{3}} \neq 0$ for $x \in S^{2}$.
2.23 Example. Let $M=\mathbb{R}^{2}$, then $N=\{x \in$ $M\left|x_{2}=\left|x_{1}\right|\right\}$ is not a submanifold, but it can be equipped with the structure of a manifold. E.g. the atlas $\left(V=N, \varphi:\left(x_{1}, x_{2}\right) \mapsto x_{1}\right)$ turns the set N into a manifold that is diffeomorphic to \mathbb{R}.

2.24 Remark. Whitney embedding theorem

A famous theorem of Hassler Whitney states that any smooth n-dimensional manifold (Hausdorff and second-countable) can be smoothly embedded into $\mathbb{R}^{2 n}$. Thus any abstract manifold is actually diffeomorphic to a of submanifold of some \mathbb{R}^{m}.

We now introduce a new type of functions on manifolds namely vector fields. A vector field is a map that selects at each point of a manifold a tangent vector at that point in a smooth way.

2.25 Definition. Vector fields

A C^{p}-map $X: M \rightarrow T M$ with $\pi_{M} \circ X=\mathrm{id}_{M}$ is called a C^{p}-vector field. We denote the set of C^{∞}-vector fields by $\mathcal{T}_{0}^{1}(M)$.
It will often be convenient to identify for a vector field $X \in \mathcal{T}_{0}^{1}(M)$ its value $X(x) \in\{x\} \times T_{x} M$ at $x \in M$ with its part in $T_{x} M$ without making this explicit in the notation by projecting on the second factor.

The idea behind the notation $\mathcal{T}_{0}^{1}(M)$ will become clear later on: tangent vector fields are just tensor fields of type $(1,0)$.
2.26 Remark. In the exercises you will show that M is parallelisable if and only of there exist a global frame for the tangent bundle, that is vector fields $X_{1}, \ldots, X_{n} \in \mathcal{T}_{0}^{1}(M)$ such that $\left(X_{1}(x), \ldots, X_{n}(x)\right)$ is a basis of $T_{x} M$ for each $x \in M$.

While the differential of any smooth map between manifolds defines a map between the tangent bundles, only diffeomorphisms allow for mapping also vector fields to vector fields.

2.27 Definition. The pushforward of vector fields

A diffeomorphism $\Phi: M_{1} \rightarrow M_{2}$ allows to map ("push forward") vector fields on M_{1} to vector fields on M_{2}. The map

$$
\Phi_{*}: \mathcal{T}_{0}^{1}\left(M_{1}\right) \rightarrow \mathcal{T}_{0}^{1}\left(M_{2}\right), \quad X \mapsto \Phi_{*} X=D \Phi \circ X \circ \Phi^{-1}
$$

is called the pushforward and can be most easily understood through the following commutative diagram:

M_{1}	$\stackrel{\Phi^{-1}}{\leftarrow}$	M_{2}
$X \downarrow$		$\downarrow \Phi_{*} X$
$T M_{1}$	$\stackrel{D \Phi}{\longrightarrow}$	$T M_{2}$.

2.28 Remark. Coordinate representation of a vector field

Using a coordinate chart (V, φ) for M, the restriction of a vector field $X \in \mathcal{T}_{0}^{1}(M)$ to V can be mapped to a vector field on $\varphi(V) \subset \mathbb{R}^{n}$ using the pushforward φ_{*},

$$
\varphi_{*} X: \mathbb{R}^{n} \supset \varphi(V) \rightarrow T \varphi(V)=\varphi(V) \times \mathbb{R}^{n}, \quad q \mapsto(q, v(q)) \quad \text { with } \quad v(q)=\sum_{j=1}^{n} v^{j}(q) e_{j}
$$

where $v^{j}(q)$ are the components of the vector $X(x) \in T_{x} M$ at $x=\varphi^{-1}(q)$ with respect to the coordinate basis $\left(\partial_{q_{1}}, \ldots, \partial_{q_{n}}\right)$, cf. definition 2.5. Note the twofold role of the chart φ here: it provides the coordinates $q=\varphi(x)$ on the patch V and also the coordinate bases of the tangent spaces.
When using charts one often writes only the vector part $v(q)$ of the vector field X.
In remark 2.4 we saw that a tangent vector v at a point $x \in M$ defines a derivation (i.e. a linear $\operatorname{map} D_{v}: C^{\infty}(M) \rightarrow \mathbb{R}$ satisfying the product rule) at that point by taking the directional derivative of a function at that point. A vector field X now provides a tangent vector, and hence a derivation, at every point of a manifold and thus a map $C^{\infty}(M) \rightarrow C^{\infty}(M)$.

2.29 Definition. The Lie derivative of a function

For a vector field $X \in \mathcal{T}_{0}^{1}(M)$ the map $L_{X}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ with

$$
f \mapsto L_{X}(f):=I \circ D f \circ X
$$

is called the Lie derivative of f with respect to X. Here $I: T \mathbb{R}=\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ denotes the projection onto the second factor. One also writes just $X(f)$ instead of $L_{X}(f)$.
2.30 Remark. Within a chart (V, φ) we write $\varphi_{*} X(q)=(q, v(q))$ and according to (2.4) we have

$$
L_{X}(f)\left(\varphi^{-1}(q)\right)=\sum_{i=1}^{n} v^{i}(q) \frac{\partial f}{\partial q_{i}}(q)
$$

where $\frac{\partial f}{\partial q_{i}}(q)$ is a short hand for $\left.\partial_{i}\left(f \circ \varphi^{-1}\right)\right|_{q}$, i.e. for the partial derivative of the pull-back of f to coordinate space.

2.31 Proposition. Properties of the Lie derivative

The Lie derivative has the following properties:
(a) $L_{X}(f+g)=L_{X}(f)+L_{X}(g)$
(b) $L_{X}(f \cdot g)=f L_{X}(g)+g L_{X}(f)$
(c) $L_{\alpha X+\beta Y}(f)=\alpha L_{X}(f)+\beta L_{Y}(f)$
for all $f, g, \alpha, \beta \in C^{\infty}(M), X, Y \in \mathcal{T}_{0}^{1}(M)$.
Proof. Homework assignments.

2.32 Remark. Derivations

A map $L: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying
(i) $L(\alpha f+g)=\alpha L f+L g$
(ii) $L(f \cdot g)=f L g+g L f$
for all $f, g \in C^{\infty}(M)$ and $\alpha \in \mathbb{R}$ is called a derivation. Every derivation L is associated with a unique vector field $X \in \mathcal{T}_{0}^{1}(M)$ such that $L=L_{X}$, cf. remark 2.4.

2.33 Corollary. The commutator of vector fields

Let $X, Y \in \mathcal{T}_{0}^{1}(M)$. There exists a unique vector field $Z \in \mathcal{T}_{0}^{1}(M)$ such that for all $f \in C^{\infty}(M)$

$$
\left[L_{X}, L_{Y}\right] f:=L_{X} L_{Y} f-L_{Y} L_{X} f=L_{Z} f
$$

The vector field Z is also written as $Z=[X, Y]$ and called the commutator of X and Y.
Proof. Homework assignments.

2.34 Remark. Naturality of the Lie derivative

Let $\Phi: M_{1} \rightarrow M_{2}$ be a diffeomorphism, $f \in C^{\infty}\left(M_{2}\right)$, and $X \in \mathcal{T}_{0}^{1}\left(M_{1}\right)$. Since the diagram

$$
\begin{array}{rlll}
M_{1} & \xrightarrow{\Phi} & M_{2} & \\
X \downarrow & & \downarrow \Phi_{*} X \\
T M_{1} & \xrightarrow{D \Phi} & T M_{2} & \xrightarrow{D f}
\end{array} T \mathbb{R}
$$

is commutative according to the definition of $\Phi_{*} X$, it follows that

$$
\begin{aligned}
L_{X}(f \circ \Phi) & =I \circ D(f \circ \Phi) \circ X=I \circ D f \circ D \Phi \circ X=I \circ D f \circ \Phi_{*} X \circ \Phi \\
& =L_{\Phi_{*} X}(f) \circ \Phi
\end{aligned}
$$

The fact that an operation behaves "natural" under diffeomorphisms is often called naturality. Here the Lie derivative transforms in the natural way: one can either pull back the function f to M_{1} or push forward the vector field X to M_{2}.

German nomenclature

bundle chart $=$ Bündelkarte	chain rule $=$ Kettenregel
commutator $=$ Kommutator	coordinates $=$ Koordinaten
derivation $=$ Derivation	differential $=$ Differential, Ableitung
embedding $=$ Einbettung	fibre $=$ Faser
immersion $=$ Immersion	Lie derivative $=$ Lieableitung
parallelisable $=$ parallelisierbar	pushforward $=$ Pushforward
representation $=$ Darstellung	smooth curve $=$ glatte Kurve
submanifold $=$ Untermannigfaltigkeit	submersion $=$ Submersion
tangent bundle $=$ Tangentialbündle	tangent space $=$ Tangentialraum
tangent vector $=$ Tangentialvektor	trivialisable $=$ trivialisierbar
vector field $=$ Vektorfeld	

3 The cotangent bundle

3.1 Reminder. The dual of a vector space

For a real vector space V of dimension $n \in \mathbb{N}$ its dual space $V^{*}:=\mathcal{L}(V, \mathbb{R})$ is defined as the space of linear maps from V to \mathbb{R}. Hence, also V^{*} is an n-dimensional real vector space. The elements of V^{*} are often called linear functionals and for $v^{*} \in V^{*}$ and $u \in V$ one writes

$$
v^{*}(u)=:\left(v^{*}, u\right)=:\left(v^{*} \mid u\right),
$$

even though the dual pairing $\left(v^{*} \mid u\right)$ is not a scalar product.

3.2 Definition. The cotangent space

Let M be a differentiable manifold and $x \in M$. The dual space $T_{x}^{*} M:=\left(T_{x} M\right)^{*}$ of the tangent space $T_{x} M$ is called the cotangent space of M at x. The elements of $T_{x}^{*} M$ are called cotangent vectors, covectors, or 1-forms.
3.3 Remark. A scalar product $\langle\cdot, \cdot\rangle$ on a vector space V provides a natural identification of V and V^{*}, namely $V \ni v \mapsto\langle v, \cdot\rangle \in V^{*}$. Without scalar product it is still true that $\operatorname{dim} V^{*}=\operatorname{dim} V$, but there is no canonical isomorphism.

3.4 Example. The differential of a function

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ one usually considers the gradient $\nabla f(x)$ at a point $x \in \mathbb{R}^{n}$ to be a vector. Without further structure, however, the differential of a function $f: M \rightarrow \mathbb{R}$ on a manifold is a covector:
For $f \in C^{\infty}(M, \mathbb{R})$ the differential (cf. definition 2.10)

$$
\left.D f\right|_{x}: T_{x} M \rightarrow T_{f(x)} \mathbb{R}=\mathbb{R}
$$

is linear and thus $\left.D f\right|_{x} \in T_{x}^{*} M$. The differential of a real-valued function is usually written as $\left.\mathrm{d} f\right|_{x}$ and also called the exterior derivative of f.
As we saw in the previous chapter, the action of $\left.\mathrm{d} f\right|_{x}$ on a tangent vector $v \in T_{x} M$ is just the directional derivative of f at the point $x \in M$ in the direction v. For $v=[c]$ we have

$$
\left.\mathrm{d} f\right|_{x}(v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(c(t))\right|_{t=0} .
$$

We can thus think of the dual pairing $(\mathrm{d} f \mid v)$ either as a linear action of the covector $\mathrm{d} f$ on the vector v or vice-versa as the linear action of the vector v as a derivation operating on the function f.

3.5 Remark. Coordinate 1-forms

In a chart $(V, \varphi), \varphi: M \supset V \rightarrow \mathbb{R}^{n}, x \mapsto \varphi(x)$ we can think of the components q_{i} for $i=1, \ldots, n$, as functions $q_{i}: V \rightarrow \mathbb{R}, x \mapsto q_{i}(x):=\varphi(x)_{i}$. The corresponding coordinate 1-forms
$\left.\mathrm{d} q_{i}\right|_{x} \in T_{x}^{*} M, i=1, \ldots, n$, form a basis of the corresponding cotangent space $T_{x}^{*} M$, since with (2.4)

$$
\left(\mathrm{d} q_{i} \mid \partial_{q_{j}}\right)=\langle\left.\underbrace{\nabla\left(q_{i} \circ \varphi^{-1}\right)}_{\equiv e_{i}}\right|_{\varphi(x)}, e_{j}\rangle=e_{i} \cdot e_{j}=\delta_{i j} .
$$

Thus the coordinate basis $\left(\mathrm{d} q_{i}\right)_{i=1, \ldots, n}$ of $T_{x}^{*} M$ is the dual basis to the coordinate basis $\left(\partial_{q_{i}}\right)_{i=1, \ldots, n}$ of $T_{x} M$. Somewhat formally the above computation reads

$$
\left(\mathrm{d} q_{i} \mid \partial_{q_{j}}\right)=\frac{\partial}{\partial q_{j}} q_{i}=\delta_{i j} .
$$

Moreover, given a covector $\omega=\sum_{j=1}^{n} \omega_{j} \mathrm{~d} q_{j}$ and a vector $v=\sum_{i=1}^{n} v^{i} \partial_{q_{i}}$ expressed with respect to the corresponding coordinate bases from a chart φ, then, by linearity in both arguments, the dual pairing takes the form

$$
\begin{equation*}
(\omega \mid v)=\left(\sum_{j=1}^{n} \omega_{j} \mathrm{~d} q_{j} \mid \sum_{i=1}^{n} v^{i} \partial_{q_{i}}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \omega_{j} v^{i}\left(\mathrm{~d} q_{j} \mid \partial_{q_{i}}\right)=\sum_{j=1}^{n} \omega_{j} v^{j} . \tag{3.1}
\end{equation*}
$$

3.6 Remark. The double dual

While there is no canonical identification of $T_{x} M$ with its dual space $T_{x}^{*} M$, the double dual $T_{x}^{* *} M:=\left(T_{x}^{*} M\right)^{*}$ can be canonically identified with $T_{x} M$: Let $v \in T_{x} M$ then

$$
\ell_{v}: T_{x}^{*} M \rightarrow \mathbb{R}, \quad u^{*} \mapsto \ell_{v}\left(u^{*}\right):=\left(u^{*} \mid v\right)
$$

is a linear map and therefore $\ell_{v} \in T_{x}^{* *} M$. The map $\iota: T_{x} M \rightarrow T_{x}^{* *} M, v \mapsto \ell_{v}$, is a vector space isomorphism. To see this note that ι is clearly linear, that $\operatorname{ker}(\iota)=\{0\}$ implies that ι is injective, and thus because of finite dimension $\operatorname{dim} T_{x} M=\operatorname{dim} T_{x}^{* *} M<\infty$ also surjective.

We thus keep in mind that a vector acts as a linear functional on covectors and a covector acts as a linear functional on vectors.

While we saw that a smooth map $f: M_{1} \rightarrow M_{2}$ can be naturally used to push forward tangent vectors from $T_{x} M_{1}$ to $T_{f(x)} M_{2}$ via its differential $f_{*}=\left.D f\right|_{x}$, the natural direction for covectors is the pullback from $T_{f(x)}^{*} M_{2}$ to $T_{x}^{*} M_{1}$.

3.7 Definition. The pullback of covectors

Let $f: M_{1} \rightarrow M_{2}$ be a smooth map between manifolds and $x \in M_{1}$. The linear map

$$
f_{x}^{*}: T_{f(x)}^{*} M_{2} \rightarrow T_{x}^{*} M_{1}, \quad u^{*} \mapsto f_{x}^{*} u^{*} \quad \text { with } \quad\left(f_{x}^{*} u^{*}\right)(v):=u^{*}\left(f_{*} v\right) \text { for all } v \in T_{x} M_{1}
$$

is called the pullback of covectors under f.

3.8 Definition. The cotangent bundle

The cotangent bundle $T^{*} M$ of M is the disjoint union of the cotangent spaces

$$
T^{*} M:=\bigcup_{x \in M}\left(\{x\} \times T_{x}^{*} M\right)=\left\{(x, v *) \mid x \in M, v^{*} \in T_{x}^{*} M\right\} .
$$

As in the case of $T M$, also $T^{*} M$ can be equipped with a canonical differentiable structure: Let $\mathcal{A}=\left(V_{i}, \varphi_{i}\right)$ be an atlas of M, then

$$
T^{*} \mathcal{A}:=\left(T^{*} V_{i},\left(\varphi_{i}, \varphi_{i}^{-1 *}\right)\right)
$$

is an atlas of $T^{*} M$. Here

$$
\begin{aligned}
\left(\varphi_{i}, \varphi_{i}^{-1 *}\right): T^{*} V_{i} & \rightarrow T^{*} \varphi_{i}\left(V_{i}\right) \subset T^{*} \mathbb{R}^{n} \\
\left(x, u^{*}\right) & \mapsto\left(\varphi_{i}(x),\left(\varphi_{i}^{-1}\right)^{*} u^{*}\right) .
\end{aligned}
$$

3.9 Definition. Covector fields or 1-forms

A C^{p}-map $\omega: M \rightarrow T^{*} M$ with $\pi_{M} \circ \omega=\operatorname{id}_{M}$ is called a C^{p}-covector field or 1-form. We denote the set of C^{∞}-covector fields by $\mathcal{T}_{1}^{0}(M)$.
As for vector fields we will often identify for a covector field $\omega \in \mathcal{T}_{1}^{0}(M)$ its value $\omega(x) \in\{x\} \times T_{x}^{*} M$ at $x \in M$ with its part in $T_{x}^{*} M$ without making this explicit in the notation by projecting on the second factor.

3.10 Example. The differential of a function as a 1-form

Let $f \in C^{\infty}(M)$, then the map

$$
\mathrm{d} f: M \rightarrow T^{*} M,\left.\quad x \mapsto \mathrm{~d} f\right|_{x} \in T_{x}^{*} M
$$

defines a covector field $\mathrm{d} f \in \mathcal{T}_{1}^{0}(M)$.

3.11 Definition. The pullback of 1 -forms

A smooth map $f: M_{1} \rightarrow M_{2}$ allows to map ("pull back") covector fields on M_{2} to covector fields on M_{1}. The map

$$
f^{*}: \mathcal{T}_{1}^{0}\left(M_{2}\right) \rightarrow \mathcal{T}_{1}^{0}\left(M_{1}\right), \quad \omega \mapsto f^{*} \omega \quad \text { with } \quad\left(f^{*} \omega\right)(x):=f_{x}^{*}(\omega(f(x))
$$

is called the pullback.
3.12 Remark. While one needs a diffeomorphism Φ in order to push-forward a vector field (cf. definition 2.27, one can pull back a covector field with any smooth map f.

3.13 Remark. Coordinate representation of a 1 -form resp. differential

Using a coordinate chart (V, φ) for M, the restriction of a covector field $\omega \in \mathcal{T}_{1}^{0}(M)$ to V can be mapped to a covector field on $\varphi(V) \subset \mathbb{R}^{n}$ using the pullback $\left(\varphi^{-1}\right)^{*}$,

$$
\left(\varphi^{-1}\right)^{*} \omega: \mathbb{R}^{n} \supset \varphi(V) \rightarrow T^{*} \varphi(V)=\varphi(V) \times \mathbb{R}^{n}, \quad q \mapsto\left(q, u^{*}(q)\right) \quad \text { with } \quad u^{*}(q)=\sum_{j=1}^{n} \omega_{j}(q) e_{j}
$$

where $\omega_{j}(q)$ are the components of the covector $\omega(x) \in T_{x}^{*} M$ with respect to the coordinate basis $\left(\mathrm{d} q_{1}, \ldots, \mathrm{~d} q_{n}\right)$, i.e. $\omega(x)=\sum_{j} \omega_{j}\left(\varphi^{-1}(q)\right) \mathrm{d} q_{j}$.
Using once more (2.4) and recalling (3.1) (cf. homework assignment 15), we find that for $\omega=\mathrm{d} f$ the components with respect to the coordinate basis are $\omega_{j}(q)=\frac{\partial f}{\partial q_{j}}(q)$, i.e.

$$
\begin{equation*}
\mathrm{d} f=\sum_{j=1}^{n} \frac{\partial f}{\partial q_{j}} \mathrm{~d} q_{j} . \tag{3.2}
\end{equation*}
$$

Recall that $\frac{\partial f}{\partial q_{j}}(q)$ is a short hand for $\left.\partial_{j}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)}$.
This implies immediately the product rule: Let $f, g \in C^{\infty}(M)$, then

$$
\mathrm{d}(f g)=g \mathrm{~d} f+f \mathrm{~d} g
$$

3.14 Proposition. The pullback of a differential

Let $f \in C^{\infty}\left(M_{1}, M_{2}\right)$ and $g \in C^{\infty}\left(M_{2}\right)$. Then

$$
f^{*} \mathrm{~d} g=\mathrm{d}(g \circ f)=: \mathrm{d}\left(f^{*} g\right),
$$

where we also introduce the pullback of a function as

$$
f^{*} g:=g \circ f .
$$

$$
\begin{array}{rll}
M_{1} & \xrightarrow{f} & M_{2} \\
f^{*} g \downarrow & & \downarrow g \\
\mathbb{R} & = & \mathbb{R}
\end{array}
$$

Proof. By the chain rule for differentials we have for all $x \in M_{1}$ and $v \in T_{x} M$ that

$$
\left.\mathrm{d}(g \circ f)\right|_{x} v=\left.\left.\mathrm{d} g\right|_{f(x)} D f\right|_{x} v=\left.\mathrm{d} g\right|_{f(x)}\left(\left.D f\right|_{x} v\right)=\left.\left(f^{*} \mathrm{~d} g\right)\right|_{x} v .
$$

3.15 Example. Polar coordinates on \mathbb{R}^{2}

Polar coordinates on \mathbb{R}^{2} are most easily defined by the map

$$
\begin{aligned}
\Phi:(0, \infty) \times(-\pi, \pi) & \rightarrow \mathbb{R}^{2} \backslash\left\{x \in \mathbb{R}^{2} \mid x_{2}=0 \text { and } x_{1} \leq 0\right\} \\
(r, \theta) & \mapsto(r \cos \theta, r \sin \theta) .
\end{aligned}
$$

It is straight forward to check that Φ is indeed a diffeomorphism between open subsets of \mathbb{R}^{2} and we might think of Φ^{-1} as a coordinate chart for (parts of) \mathbb{R}^{2}.
On the target \mathbb{R}^{2} we have the basis 1 -forms $\mathrm{d} x_{1}$ and $\mathrm{d} x_{2}$. In order to express them in terms of the coordinate 1 -forms $\mathrm{d} r$ and $\mathrm{d} \theta$ we apply proposition 3.14 , the product rule, and (3.2):

$$
\begin{align*}
& \Phi^{*}\left(\mathrm{~d} x_{1}\right)=\mathrm{d}\left(x_{1} \circ \Phi\right)=\mathrm{d}(r \cos \theta)=\cos \theta \mathrm{d} r+r \mathrm{~d}(\cos \theta)=\cos \theta \mathrm{d} r-r \sin \theta \mathrm{~d} \theta \\
& \Phi^{*}\left(\mathrm{~d} x_{2}\right)=\mathrm{d}\left(x_{2} \circ \Phi\right)=\mathrm{d}(r \sin \theta)=\sin \theta \mathrm{d} r+r \mathrm{~d}(\sin \theta)=\sin \theta \mathrm{d} r+r \cos \theta \mathrm{~d} \theta .
\end{align*}
$$

We will see later that 1 -forms are the natural geometric objects that can be integrated along 1 -dimensional (oriented) submanifolds, i.e. along curves. Without giving further details at this point, let us just give the definition of the integral of a 1 -form along a curve as a first hint.

3.16 Definition. The line integral of a 1 -form

Let M be a smooth manifold, $I=[a, b] \subset \mathbb{R}$ an interval, $\gamma \in C^{\infty}(I, M)$ a smooth curve, and $\omega \in \mathcal{T}_{1}^{0}(M)$ a 1 -form. Then the integral of ω along γ is the number

$$
\int_{\gamma} \omega:=\int_{I} \gamma^{*} \omega:=\int_{a}^{b}\left(\gamma^{*} \omega \mid e\right)(t) \mathrm{d} t
$$

where $\gamma^{*} \omega$ is the pullback of ω to I under γ and $e: I \rightarrow I \times \mathbb{R}, t \mapsto(t, 1)$, is the unit vector field on I. The dual pairing $\left(\gamma^{*} \omega \mid e\right) \in C^{\infty}(I)$ between $\gamma^{*} \omega \in \mathcal{T}_{1}^{0}(I)$ and $e \in \mathcal{T}_{0}^{1}(I)$ is to be taken pointwise and defines a smooth function on I that is integrated in the standard Riemannian sense. So the idea is to pull back the 1-form to parameter space and interpret the integral there as a usual Riemann integral. You will show in the homewrok assignments that the value of a line integral according to this definition is invariant under reparametrisations of the curve up to a sign coming from a possible change of orientation. Moreover, you will show the fundamental theorem of calculus, namely that for $\omega=\mathrm{d} f$

$$
\int_{\gamma} \mathrm{d} f=f(\gamma(b))-f(\gamma(a)) .
$$

German nomenclature

```
cotangent space = Kotangentialraum
double dual = Bidual
line integral = Wegintegral
product rule = Produktregel
1-form = 1-Form
```

differential $=$ Differential
dual space $=$ Dualraum polar coordinates $=$ Polarkoordinaten pullback $=$ Rückzug

4 Tensors

As explained in the previous chapter, covectors are by definition linear maps from the underlying vector space V into \mathbb{R} and vectors can be understood in a canonical way as linear maps from the dual space V^{*} into \mathbb{R}. In a nutshell, tensors are multi-linear maps on cartesian products of the form $V^{*} \times \cdots \times V^{*} \times V \times \cdots \times V$. For example, a scalar product is a bilinear map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$. Also the (signed euclidean) area of a parallelogram spanned by two vectors $v, u \in \mathbb{R}^{2}$ is a bilinear function of the two vectors,

$$
\text { area }: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad(u, v) \mapsto \operatorname{area}(u, v):=u \wedge v:=u_{1} v_{2}-u_{2} v_{1}
$$

since

$$
\begin{array}{ll}
\operatorname{area}(\alpha u, v)=\operatorname{area}(u, \alpha v)=\alpha \operatorname{area}(u, v) & \text { for all } u, v \in \mathbb{R}^{2} \text { and } \alpha \in \mathbb{R} \\
\operatorname{area}(u+w, v)=\operatorname{area}(u, v)+\operatorname{area}(w, v) & \text { for all } u, v, w \in \mathbb{R}^{2} \\
\operatorname{area}(u, v+w)=\operatorname{area}(u, v)+\operatorname{area}(u, w) & \text { for all } u, v, w \in \mathbb{R}^{2}
\end{array}
$$

Such functions of several vectors or covectors that are linear in each argument are also called multi-linear forms or tensors. Multi-linear functions of tangent vectors and covectors to manifolds appear naturally in different geometrical and physical contexts. In the following we will discuss basic definitions and properties of tensors for arbitrary finite dimensional real vector spaces V, independently of the context of differentiable manifolds. But you can keep in mind that later on the tangent space $T_{x} M$ at a point x in a differentiable manifold M will take the role of the vector space V.

4.1 Definition. Tensors

Let V be a n-dimensional vector space and V^{*} its dual. A multi-linear map

$$
t: \underbrace{V^{*} \times \cdots \times V^{*}}_{r \text {-copies }} \times \underbrace{V \times \cdots \times V}_{s \text {-copies }} \rightarrow \mathbb{R}
$$

is called a tensor of type (r, s) and we write, similar to the notation used for the dual pairing,

$$
t\left(v_{1}^{*}, \ldots, v_{r}^{*} ; v_{1}, \ldots, v_{s}\right)=:\left(t \mid v_{1}^{*}, \ldots, v_{r}^{*} ; v_{1}, \ldots, v_{s}\right) .
$$

For tensors t_{1} and t_{2} of the same type and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ one defines

$$
\left(\alpha_{1} t_{1}+\alpha_{2} t_{2} \mid \ldots\right):=\alpha_{1}\left(t_{1} \mid \ldots\right)+\alpha_{2}\left(t_{2} \mid \ldots\right)
$$

and thereby equips the space of tensors of a given type with the structure of a vector space that will be denoted by V_{s}^{r}. In particular, $V^{*}=V_{1}^{0}$ and $V=V_{0}^{1}$.

Given, for example, two covectors $v_{1}^{*}, v_{2}^{*} \in V^{*}$, one can define the bilinear map

$$
v_{1}^{*} \otimes v_{2}^{*}: V \times V \rightarrow \mathbb{R}, \quad\left(u_{1}, u_{2}\right) \mapsto v_{1}^{*} \otimes v_{2}^{*}\left(u_{1}, u_{2}\right):=\left(v_{1}^{*} \mid u_{1}\right)\left(v_{2}^{*} \mid u_{2}\right)
$$

called the tensor product of v_{1}^{*} and v_{2}^{*}. In the same way one can define tensor products of arbitrary tensors in order to define new tensors of higher order.

4 Tensors

4.2 Definition. The tensor product of tensors

Let V be a n-dimensional vector space and $t_{1} \in V_{s}^{r}$ and $t_{2} \in V_{s^{\prime}}^{r^{\prime}}$. The tensor product $t_{1} \otimes t_{2}$ is the tensor of type $\left(r+r^{\prime}, s+s^{\prime}\right)$ defined by
$\left(t_{1} \otimes t_{2} \mid u_{1}^{*}, \ldots, u_{r+r^{\prime}}^{*}, u_{1}, \ldots, u_{s+s^{\prime}}\right)=\left(t_{1} \mid u_{1}^{*}, \ldots, u_{r}^{*} ; u_{1}, \ldots, u_{s}\right)\left(t_{2} \mid u_{r+1}^{*}, \ldots, u_{r+r^{\prime}}^{*} ; u_{s+1}, \ldots, u_{s+s^{\prime}}\right)$.
Note that multi-linearity is obvious from this definition.
4.3 Remark. It follows directly from the definition that the map

$$
\otimes: V_{s}^{r} \times V_{s^{\prime}}^{r^{\prime}} \rightarrow V_{s+s^{\prime}}^{r+r^{\prime}}
$$

is associative and distributive, but not commutative.
While not every tensor can be written as a tensor product of vectors and covectors, linear combinations of such tensor products span the whole spaces V_{s}^{r}.
4.4 Proposition. Let $\left\{e_{j}\right\}$ and $\left\{e_{i}^{*}\right\}$ be bases of $V=V_{0}^{1}$ and $V^{*}=V_{1}^{0}$ respectively. Then every $t \in V_{s}^{r}$ can be uniquely written in the form

$$
\begin{equation*}
t=\sum_{(i),(j)} t_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}} e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \otimes e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{s}}^{*} \tag{*}
\end{equation*}
$$

with coefficients $t_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}} \in \mathbb{R}$. In the sum all indices j_{1}, \ldots, j_{r} and i_{1}, \ldots, i_{s} run from 1 to n.
Thus, the n^{r+s} tensor products

$$
e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \otimes e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{s}}^{*}, \quad j_{1}, \ldots, j_{r}, i_{1}, \ldots, i_{s}=1, \ldots, n
$$

form a basis of V_{s}^{r} and the space V_{s}^{r} has dimension n^{r+s}.
Proof. Let $\left\{b_{j}^{*}\right\}$ and $\left\{b_{i}\right\}$ be the bases of V^{*} and V that are dual to $\left\{e_{j}\right\}$ and $\left\{e_{i}^{*}\right\}$, i.e.

$$
\left(b_{j}^{*} \mid e_{i}\right)=\delta_{i j} \quad \text { and } \quad\left(e_{i}^{*} \mid b_{j}\right)=\delta_{i j}:= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Note that the dual bases are unique because a linear map is uniquely specified when given its action on a basis. If we now define

$$
\begin{equation*}
t_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}}=t\left(b_{j_{1}}^{*}, \ldots, b_{j_{r}}^{*}, b_{i_{1}}, \ldots, b_{i_{s}}\right), \tag{4.1}
\end{equation*}
$$

then $(*)$ holds on elements of the form $\left(b_{j_{1}}^{*}, \ldots, b_{j_{r}}^{*}, b_{i_{1}}, \ldots, b_{i_{s}}\right)$ and by multi-linearity of both sides of $(*)$ on any tupel $\left(u_{1}^{*}, \ldots, u_{r}^{*}, u_{1}, \ldots, u_{s}\right)$. Uniqueness follows from linear independence of the different tensor products $e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \otimes e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{s}}^{*}$.
4.5 Remark. Note that we use the standard convention to write the coefficients of a tensor with vector indices (also called contravariant indices) as upper indices and covector indices (also called covariant indices) as lower indices. It is not uncommon in physics to call "tensor" the components $t_{i_{1} \ldots i_{s}}^{j_{1} \ldots j_{r}}$ of a tensor t and to say that the array of numbers $t_{i_{1} \ldots i_{s}}^{j_{1} \ldots j_{r}}$ is a tensor of type (r, s) because it transforms under basis changes in the appropriate way.

4.6 Definition. Metric tensor

(a) A tensor $g \in V_{2}^{0}$ that is symmetric, i.e. that satisfies

$$
g(u, v)=g(v, u) \quad \text { for all } u, v \in V_{0}^{1}
$$

and positive definite, i.e.

$$
g(v, v)>0 \quad \text { for all } v \neq 0
$$

is called a metric tensor or scalar product.
(b) A tensor $g \in V_{2}^{0}$ with the property that

$$
\begin{equation*}
g(v, u)=0 \quad \text { for all } u \in V \quad \Rightarrow \quad v=0 \tag{4.2}
\end{equation*}
$$

is called non-degenerate.
Any metric tensor g is non-degenerate, since $g(v, u)=0$ for all u implies that, in particular, $g(v, v)=0$ and thus by definiteness $v=0$. Examples for (b) are pseudo-metrics (g symmetric and non-degenerate) or symplectic forms (g skew-symmetric and non-degenerate).
4.7 Remark. Recall that a metric tensor allows us to define the "length" or norm of a vector $v \in V$ as $\|v\|:=\sqrt{g(v, v)}$ and the angle between vectors as $g(v, u)=: \cos (\measuredangle(v, u))\|v\|\|u\|$. In particular, two vectors are orthogonal with respect to the metric g, if $g(u, v)=0$.
4.8 Remark. With the help of a non-degenerate $g \in V_{2}^{0}$ one can identify a vector space V and its dual space V^{*} :
For $v \in V$ the map

$$
g(v, \cdot): V \rightarrow \mathbb{R}, \quad u \mapsto g(v, u)
$$

is linear and hence defines an element of V^{*}. The map

$$
\iota_{g}: V \rightarrow V^{*}, \quad v \mapsto \iota_{g}(v):=g(v, \cdot)
$$

is again linear. Because of 4.2), its kernel contains only the zero vector and thus ι_{g} is an isomorphism.

4.9 Notation. The index calculus

Let $\left(e_{j}\right)_{j=1, \ldots, n}$ be a basis of V and let (from now on always) be $\left(e^{i}\right)_{i=1, \ldots, n}$ (upper index!) the dual basis of V^{*} defined by

$$
e^{i}\left(e_{j}\right)=\delta_{i j}:= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

To avoid confusion between indices of components of vectors and covectors, components of vectors have upper indices, while components of covectros have lower indices. For example, the basis representation of a vector $v \in V$ with respect to $\left(e_{i}\right)$ is

$$
v=\sum_{i=1}^{n} v^{i} e_{i}=: v^{i} e_{i}
$$

and the basis representation of a covector $u \in V^{*}$ with respect to $\left(e^{i}\right)$ is

$$
u=\sum_{i=1}^{n} u_{i} e^{i}=: u_{i} e^{i} .
$$

Note that in the expressions above we applied the Einstein summation convention where summation over indices appearing twice is understood implicitly.
Similarly, the basis representation of a metric tensor $g \in V_{2}^{0}$ is written as

$$
g=\sum_{i, j=1}^{n} g_{i j} e^{i} \otimes e^{j}=: g_{i j} e^{i} \otimes e^{j}
$$

These conventions provide a very elegant calculus that simpifies computations in components considerably. Here are some examples: Let $u, v \in V$ with $u=u^{n} e_{n}$ and $v=v^{n} e_{n}$ and $w \in V^{*}$ with $w=w_{n} e^{n}$ then
(a) $w(v)=w_{n} e^{n}\left(v^{m} e_{m}\right)=w_{n} v^{m} e^{n}\left(e_{m}\right)=w_{n} v^{n}$
(b) $\langle u \mid v\rangle_{g}=g(u, v)=g_{i j}\left(e^{i} \otimes e^{j}\right)\left(u^{m} e_{m}, v^{n} e_{n}\right)=g_{i j} u^{m} v^{n} e^{i}\left(e_{m}\right) e^{j}\left(e_{n}\right)=g_{i j} u^{i} v^{j}=u^{m} g_{m n} v^{n}$
(c) From (a) and (b) it follows that $\iota_{g}(u)=g(u, \cdot)$ has the basis representation $\iota_{g}(u)=u_{n} e^{n}$ with components $u_{n}=u^{m} g_{m n}$.
(d) We denote by $g^{i j}$ the entries of the inverse matrix of $\left(g_{i j}\right)$, i.e.

$$
g_{i j} g^{j n}=g^{i j} g_{j n}=\delta_{n}^{i}:=\delta_{i n} .
$$

Thus in (c) we also have $u^{n}=u_{m} g^{m n}$ and $\iota_{g}\left(e_{i}\right)=g\left(e_{i}, \cdot\right)=g_{i j} e^{j}$. Hence, in general, $\iota_{g}\left(e_{i}\right) \neq e^{i}$.
(e) The space V_{1}^{1} is canonically isomorphic to the space of endomorphism $\mathcal{L}(V)$ of V. Let $a \in V_{1}^{1}$, then

$$
A: V \rightarrow V, \quad u \mapsto A u:=\iota^{-1}(a(\cdot, u))
$$

defines an endomorphism. Here we used the identification of V and $V^{* *}$ introduced in remark 3.6. Vice versa, an endomorphism $A: V \rightarrow V$ defines a tensor $a \in V_{1}^{1}$ through

$$
a\left(v^{*}, u\right):=\left(v^{*} \mid A u\right) .
$$

The maps $a \mapsto A$ and $A \mapsto a$ are clearly linear and inverse to each other.
Using the basis representation we find that the components a_{i}^{j} of $a \in V_{1}^{1}$ are just the matrix entries of the endomorphism A,

$$
\left(e^{i} \mid A e_{j}\right)=\left(e^{i} \mid \iota^{-1}\left(a\left(\cdot, e_{j}\right)\right)\right)=a\left(e^{i}, e_{j}\right)=a_{j}^{i} \quad \Rightarrow \quad\left(A e_{j}\right)^{i}=a_{j}^{i} \quad \Rightarrow \quad A e_{j}=a_{j}^{i} e_{i},
$$

where we used the formula 4.1) to compute the components of a.
(f) In the same way the space V_{1}^{1} is also canonically isomorphic to the space of endomorphism $\mathcal{L}\left(V^{*}\right)$ of V^{*}. Let $a \in V_{1}^{1}$, then

$$
A^{*}: V^{*} \rightarrow V^{*}, \quad u^{*} \mapsto A^{*} u^{*}:=a\left(u^{*}, \cdot\right)
$$

defines an endomorphism. Given an element $a \in V_{1}^{1}$, the corresponding A^{*} is really the adjoint map of the corresponding A,

$$
\left(v^{*} \mid A u\right)=a\left(v^{*}, u\right)=\left(A^{*} v^{*} \mid u\right) .
$$

We now discuss how a change of basis affects the components of tensors. Let $A: V \rightarrow V$ be an isomorphism and define a new basis (\hat{e}_{i}) of V by putting $\hat{e}_{i}:=A e_{i}$, with dual basis (\hat{e}^{i}). The endomorphism $B: V^{*} \rightarrow V^{*}$ that connects the dual bases as $\hat{e}^{i}:=B e^{i}$ is determined by

$$
\begin{equation*}
\delta_{j i} \stackrel{!}{=}\left(\hat{e}^{i} \mid \hat{e}_{j}\right)=\left(B e^{i} \mid A e_{j}\right)=:\left(A^{*} B e^{i} \mid e_{j}\right) \quad \Rightarrow \quad B=\left(A^{*}\right)^{-1} . \tag{4.3}
\end{equation*}
$$

If a_{i}^{j} is the matrix of A, i.e. $A e_{i}=a_{i}^{j} e_{j}$, then $A^{*} e^{j}=a_{i}^{j} e^{i}$ and thus the matrix of b_{k}^{j} of B, i.e. $B e^{j}=b_{k}^{j} e^{k}$, must satisfy $b_{k}^{j} a_{i}^{k}=\delta_{j i}$. Hence, as a matrix, b_{k}^{j} is the inverse of a_{k}^{j}. However, b_{k}^{j} is the matrix of an endomorphism $B: V^{*} \rightarrow V^{*}$, while a_{k}^{j} is the matrix of an endomorphism $A: V \rightarrow V$.
The components of an arbitrary tensor $t \in V_{s}^{r}$ transform because of

$$
t=t_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}} e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \otimes e^{i_{1}} \otimes \cdots \otimes e^{i_{s}}=\hat{t}_{k_{1} \cdots k_{s}}^{l_{1} \cdots l_{r}} \hat{e}_{l_{1}} \otimes \cdots \otimes \hat{e}_{l_{r}} \otimes \hat{e}^{k_{1}} \otimes \cdots \otimes \hat{e}^{k_{s}}
$$

according to

$$
\hat{t}_{k_{1} \cdots k_{s}}^{\hat{l}_{1} \cdots r_{r}} a_{l_{1}}^{j_{1}} \cdots a_{l_{r}}^{j_{r}} b_{i_{1}}^{k_{1}} \cdots b_{i_{s}}^{k_{s}}=t_{i_{1} \cdots i_{s}}^{j_{1} \cdots j_{r}} \quad \text { or } \quad \hat{t}_{k_{1} \cdots k_{s}}^{\hat{l}_{1} \cdots r_{r}}=t_{i_{1} \cdots i_{s}}^{j_{1} \cdots b_{r}} b_{j_{1}}^{l_{1}} \cdots b_{j_{r}}^{l_{r}} a_{k_{1}}^{i_{1}} \cdots a_{k_{s}}^{i_{s}} .
$$

4.10 Remark. Given a non-degenerate $g \in V_{2}^{0}$, one often identifies a vector u and the covector $\iota_{g}(u)=g(u, \cdot)$. Then, mostly in the physics literature, u^{j} are called the contravariant and u_{j} the covariant components of u, although u_{j} are actually the components of $\iota_{g}(u)$.
4.11 Definition. A non-degenerate $g \in V_{2}^{0}$ allows also for a canonical identification of any tensor space V_{s}^{r} with V_{r}^{s} and with V_{s+r}^{0} and V_{0}^{s+r} by concatenating ι_{g} or ι_{g}^{-1} in the respective arguments. In particular,

$$
I_{g}: V_{s}^{r} \rightarrow V_{r}^{s}, t \mapsto t \circ(\underbrace{\iota_{g}, \cdots, \iota_{g}}_{s \text { copies }}, \underbrace{\iota_{g}^{-1}, \cdots, \iota_{g}^{-1}}_{r \text { copies }}) .
$$

Within the index calculus this identification takes the following form. Let $t \in V_{s}^{r}$ with $t=$ $t_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} e_{i_{1}} \otimes \cdots \otimes e_{i_{r}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}}$, then e.g.

$$
\begin{aligned}
\tilde{t} & =t_{j_{1} \ldots s_{s}}^{i_{1} \ldots i_{r}} \iota_{g}\left(e_{i_{1}}\right) \otimes \cdots \otimes \iota_{g}\left(e_{i_{r}}\right) \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}} \\
& =t_{j_{1} \ldots j_{s}}^{i_{1}} g_{i_{1} n_{1}} \cdots g_{i_{r} n_{r}} e^{n_{1}} \otimes \cdots \otimes e^{n_{r}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}} \\
& =: t_{j_{1} \ldots j_{s} n_{1} \ldots n_{r}} e^{n_{1}} \otimes \cdots \otimes e^{n_{r}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}} \in V_{r+s}^{0} .
\end{aligned}
$$

In general one can thus use $g^{i j}$ and $g_{i j}$ to raise resp. lower tensor indices and thereby change the tensor type from (r, s) to $(r+1, s-1)$ resp. $(r-1, s+1)$.
4.12 Definition. A non-degenerate bilinear map $g \in V_{2}^{0}$ can be lifted to a non-degenerate bilinear map on arbitrary tensors,

$$
G: V_{s}^{r} \times V_{s}^{r} \rightarrow \mathbb{R}, \quad(t, \tilde{t}) \mapsto G(t, \tilde{t})=\left(I_{g}(t) \mid \tilde{t}\right)
$$

In index notation we have

$$
G(t, \tilde{t})=t_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} \tilde{t}_{n_{1} \cdots n_{s}}^{m_{1} \cdots m_{r}} g_{i_{1} m_{1}} \cdots g_{i_{r} m_{r}} g^{j_{1} n_{1}} \cdots g^{j_{s} n_{s}}
$$

If g is a metric on V, then G is a metric on V_{s}^{r}.

4.13 Definition. Contraction of tensors

By contracting two indices, more precisely one upper, say the ℓ th, and one lower, say the k th, of a tensor $t \in V_{s}^{r}$ with

$$
t=t_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}} e_{i_{1}} \otimes \cdots \otimes e_{i_{r}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}}
$$

one obtains a tensor $\tilde{t} \in V_{s-1}^{r-1}$ by putting

$$
\tilde{t}=t_{j_{1} \cdots m \cdots j_{s}}^{i_{1} \cdots m \cdots i_{r}} e_{i_{1}} \otimes \cdots \otimes \hat{e}_{i_{\ell}} \otimes \cdots \otimes e^{j_{1}} \otimes \cdots \otimes \hat{e}^{j_{k}} \otimes \cdots=\sum_{m=1}^{n} t\left(\cdots, e^{m}, \cdots, e_{m}, \cdots\right)
$$

Here the hat over a factor means that it is left out and in the sum on the right hand side the vector e^{m} is in the ℓ th covector-slot and e_{m} is in the k th vector-slot. It is easy to check that the resulting tensor \tilde{t} is independent of the chosen basis for V.
Unless $t_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}}$ is symmetric in all upper and lower indices, the resulting tensor \tilde{t} depends on which indices are contracted.
For $a \in V_{1}^{1}$ the contraction $\operatorname{tr} a:=a_{i}^{i}$ is called the trace of a and it is just the usual trace of the corresponding endomorphism $A: V \rightarrow V$. For a metric $g \in V_{2}^{0}$ and $t \in V_{0}^{2}$ resp. $\tilde{t} \in V_{2}^{0}$ the contractions $\operatorname{tr}_{g} t=t^{i j} g_{i j}$ resp. $\operatorname{tr}_{g} \tilde{t}=t_{i j} g^{i j}$ are called the metric traces.

We now define the tensor bundles over a manifold M by attaching locally the tensor spaces $T_{x}{ }_{s}^{r} M$ associated with the tangent space $V=T_{x} M$.

4 Tensors

4.14 Definition. Tensor bundles

We define $T_{s}^{r} M=\bigcup_{x \in M}\left(\{x\} \times T_{x_{s}}^{r} M\right)=\left\{(x, t) \mid x \in M, t \in T_{x}{ }_{s}^{r} M\right\}$ as the bundle of tensors of type (r, s). Any atlas $\mathcal{A}=\left(V_{i}, \varphi_{i}\right)$ of M yields a natural atlas on $T_{s}^{r} M$ through

$$
T_{s}^{r} \mathcal{A}=\left(T_{s}^{r} V_{i}, \tilde{\varphi}_{i}\right)
$$

Here

$$
\tilde{\varphi}_{i}: T_{s}^{r} V_{i} \rightarrow T_{s}^{r} \varphi_{i}\left(V_{i}\right)
$$

is defined by
$\tilde{\varphi}_{i}\left(x, e_{k_{1}} \otimes \cdots \otimes e_{k_{r}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{s}}\right)=\left(\varphi_{i}(x), \varphi_{i *} e_{k_{1}} \otimes \cdots \otimes \varphi_{i *} e_{k_{r}} \otimes\left(\varphi_{i}^{-1}\right)^{*} e^{j_{1}} \otimes \cdots \otimes\left(\varphi_{i}^{-1}\right)^{*} e^{j_{s}}\right)$
and linearity in each fibre.

4.15 Definition. Tensor fields

A $C^{\infty}{ }_{-m a p} t: M \rightarrow T_{s}^{r} M$ with $\pi_{M} \circ t=\operatorname{id}_{M}$ is called a tensor field and we denote the space of tensor fields by $\mathcal{T}_{s}^{r}(M)$. We set $\mathcal{T}_{0}^{0}(M):=C^{\infty}(M)$.
4.16 Remarks. (a) Locally any tensor field can be expressed in terms of coordinate basis fields:

$$
t(x)=t_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}}(x) \partial_{q_{i_{1}}} \otimes \cdots \otimes \partial_{q_{i_{r}}} \otimes \mathrm{~d} q^{j_{1}} \otimes \cdots \otimes \mathrm{~d} q^{j_{s}}
$$

with $t_{(j)}^{(i)} \in C^{\infty}(M)$. In the physics literature sometimes the component functions $t_{(j)}^{(i)}(x)$ are called tensor fields.
(b) If there exist n vector fields $e_{i} \in \mathcal{T}_{0}^{1}(M)$ that are pointwise linear independent, i.e. if M is parallelisable, then the covector fields $e^{j} \in \mathcal{T}_{1}^{0}(M)$ that are pointwise dual are pointwise linear independent in $\mathcal{T}_{1}^{0}(M)$ as well. By taking tensor products, one obtains basis sections of all tensor bundles. We thus have: if M is parallelisable, then all tensor bundles over M are trivialisable.

4.17 Definition. Riemannian and pseudo-Riemannian metrics

A non-degenerate and symmetric bilinear form $g \in \mathcal{T}_{2}^{0}(M)$ is called a pseudo-Riemannian metric and the pair (M, g) a pseudo-Riemannian manifold. If g is, in addition, fibre-wise positive definite, then it is called a Riemannian metric and (M, g) a Riemannian manifold.

4.18 Example. Minkowski space

On $M=\mathbb{R}^{4}$ a pseudo-Riemannian metric is given by

$$
\eta=\eta_{i j} \mathrm{~d} q^{i} \otimes \mathrm{~d} q^{j}
$$

with

$$
\eta_{i j}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It is called the Minkowski metric and the space M equipped with the Minkowski metric η is called Minkowski space. It is the space-time manifold of special relativity.

4.19 Remark. Abstract index notation

Instead of using indices to label components of tensors in specific basis representations with respect to local charts, one can also use the indices to merely have a concise notation for indicating the type of a tensor and to have a shorthand for operations like the contraction that are difficult to express in the coordinate free notation.

One would write for example for the Riemann tensor $R_{b c d}^{a} \in V_{3}^{1}$ and obtain the Ricci tensor by contracting to $R_{b d}:=R_{b a d}^{a} \in V_{2}^{0}$. Here the indices are merely a notational tool, not related to any basis and, in particular, have no numerical values. The notation $R_{b a d}^{a}$ then indicates that one contracts the first and the third argument of the tensor to obtain a new one.

We end this section with a few straight forward observations. First we can extend the pull back map to arbitary multilinear forms in an obvious way.

4.20 Definition. The pull-back of multilinear forms

Let $f: M_{1} \rightarrow M_{2}$ be smooth and $\omega \in \mathcal{T}_{p}^{0}\left(M_{2}\right)$. Then $f^{*} \omega \in \mathcal{T}_{p}^{0}\left(M_{1}\right)$ is defined as

$$
\left.f^{*} \omega\right|_{x}\left(v_{1}, \ldots, v_{p}\right)=\left.\omega\right|_{f(x)}\left(f_{*} v_{1}, \ldots, f_{*} v_{p}\right) \quad \text { for all } v_{1}, \ldots, v_{p} \in T_{x} M_{1}
$$

Next we clarify how a diffeomorphism $\Phi: M_{1} \rightarrow M_{2}$ between manifolds induces a diffeomorphism of corresponding tensor bundles of equal type. First observe that the fibre wise pull-back defines a diffeomorphism of the cotangent bundles,

$$
T^{*} M_{2} \rightarrow T^{*} M_{1}, \quad(y, \omega) \mapsto\left(\Phi^{-1}(y),\left.\Phi^{*} \omega\right|_{\Phi^{-1}(y)}\right)
$$

For the inverse of this map we write

$$
D^{*} \Phi: T^{*} M_{1} \rightarrow T^{*} M_{2}, \quad(x, \omega) \mapsto\left(\Phi(x),\left.\Phi^{-1 *} \omega\right|_{\Phi(x)}\right)
$$

It holds that

$$
\left(D^{*} \Phi \omega \mid D \Phi v\right)_{\Phi(x)}=(\omega \mid v)_{x} \quad \text { for all } \omega \in T_{x}^{*} M_{1}, v \in T_{x} M_{1}
$$

since $\left(D^{*} \Phi \omega\right)(D \Phi v)=\omega\left(D \Phi^{-1} \circ D \Phi v\right)=\omega(v)$.
We obtain diffeomorphisms of arbitrary tensor bundles through

$$
D \Phi \otimes \cdots \otimes D \Phi \otimes D^{*} \Phi \otimes \cdots \otimes D^{*} \Phi: T_{s}^{r} M_{1} \rightarrow T_{s}^{r} M_{2}
$$

where one defines on products

$$
\begin{aligned}
& D \Phi \otimes \cdots \otimes D \Phi \otimes D^{*} \Phi \otimes \cdots \otimes D^{*} \Phi\left(x, u_{1} \otimes \cdots \otimes u_{r} \otimes \omega^{1} \otimes \cdots \otimes \omega^{s}\right) \\
&:=\left(\Phi(x), D \Phi u_{1} \otimes \cdots \otimes D \Phi u_{r} \otimes D^{*} \Phi \omega^{1} \otimes \cdots \otimes D^{*} \Phi \omega^{s}\right)
\end{aligned}
$$

and then extends this definition by linearity in every fibre $T_{x}{ }_{s}^{r} M_{1}$.

4.21 Definition. The push-forward of tensor fields

A diffeomorphism $\Phi: M_{1} \rightarrow M_{2}$ induces a map $\Phi_{*}: \mathcal{T}_{s}^{r}\left(M_{1}\right) \rightarrow \mathcal{T}_{s}^{r}\left(M_{2}\right)$, called the pushforward of tensor fields, that is defined by commutativity of the diagram

i.e. for $t \in \mathcal{T}_{s}^{r}\left(M_{1}\right)$ we set

$$
\Phi_{*} t=\underbrace{D \Phi \otimes \cdots \otimes D \Phi}_{r \text {-copies }} \otimes \underbrace{D^{*} \Phi \otimes \cdots \otimes D^{*} \Phi}_{s \text {-copies }} \circ t \circ \Phi^{-1} .
$$

Again the chain rule $(\Phi \circ \Psi)_{*}=\Phi_{*} \Psi_{*}$ holds and the pull-back Φ^{*} can be extended to arbitrary tensor fields by defining $\Phi^{*}:=\left(\Phi^{-1}\right)_{*}$.
4.22 Examples. (a) For a function $f \in \mathcal{T}_{0}^{0}\left(M_{1}\right)$ we have $\Phi_{*} f=f \circ \Phi^{-1}$.
(b) For a vector field $X \in \mathcal{T}_{0}^{1}\left(M_{1}\right)$ the push-forward $\Phi_{*} X=D \Phi \circ X \circ \Phi^{-1}$ was already defined definition 2.27 .
(c) The push-forward under a diffeomorphism commutes with the differential: for $f \in \mathcal{T}_{0}^{0}\left(M_{1}\right)$ we have $\Phi_{*} \mathrm{~d} f=\mathrm{d}\left(\Phi_{*} f\right)$.
(d) Let (V, φ) be a chart on M, let e_{i} be the i th canonical unit vector field on \mathbb{R}^{n}, and let $e^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, q=\left(q_{1}, \ldots, q_{n}\right) \mapsto q_{i}$ denote the i th coordinate function on \mathbb{R}^{n}. Then the coordinate 1-forms and the coordinate vector fields on $V \subset M$ are given by $\mathrm{d} q^{i}=\varphi^{*} \mathrm{~d} e^{i}$ and $\partial_{q_{j}}=\left(\varphi^{-1}\right)_{*} e_{j}$. From this the tranformation laws for $\partial_{q_{j}}$ and $\mathrm{d} q^{i}$ under coordinate changes follow immediately: Let $\tilde{\varphi}$ be another chart on $V, \partial_{\tilde{q}_{j}}=\left(\tilde{\varphi}^{-1}\right)_{*} e_{j}$ and $\mathrm{d} \tilde{q}^{i}=\tilde{\varphi}^{*} \mathrm{~d} e^{i}$ the corresponding coordinate forms and vector fields, and $\Phi=\tilde{\varphi} \circ \varphi^{-1}$ the transition map in \mathbb{R}^{n}.

Since the diagram is commutative,

$$
\partial_{q_{j}}=\left(\varphi^{-1}\right)_{*} e_{j}=\left(\varphi^{-1}\right)_{*}\left(\Phi^{-1}\right)_{*} \Phi_{*} e_{j}=\left(\tilde{\varphi}^{-1}\right)_{*}(D \Phi)_{j}^{i} e_{i}=(D \Phi)_{j}^{i} \partial_{\tilde{q}_{i}}
$$

and thus $\partial_{\tilde{q}_{j}}=\left(D \Phi^{-1}\right)_{j}^{i} \partial_{q_{i}}$. It then follows from (4.3) that $\mathrm{d} \tilde{q}^{j}=(D \Phi)_{i}^{j} \mathrm{~d} q^{i}$ and $\mathrm{d} q^{j}=$ $\left(D \Phi^{-1}\right)_{i}^{j} \mathrm{~d} \tilde{q}^{i}$.

While the dual pairing (\mid) is invariant under diffeomorphisms,

$$
\left(\Phi_{*} \omega \mid \Phi_{*} v\right)=(\omega \mid v),
$$

this does not hold for scalar products in general, but only for diffeomorphisms Φ that leave invariant the metric g.

4.23 Definition. Isometries and canonical transformations

Let M_{1} and M_{2} be smooth manifolds and let $g_{1} \in \mathcal{T}_{2}^{0}\left(M_{1}\right)$ and $g_{2} \in \mathcal{T}_{2}^{0}\left(M_{2}\right)$ be non-degenerate. A diffeomorphism $\Phi: M_{1} \rightarrow M_{2}$ with $g_{2}=\Phi_{*} g_{1}$, i.e.

$$
g_{2}\left(\Phi_{*} v, \Phi_{*} u\right) \circ \Phi=g_{1}(v, u) \quad \text { for all } v, u \in \mathcal{T}_{0}^{1}\left(M_{1}\right)
$$

is called an isometry, if g_{1} and g_{2} are (pseudo-)Riemannian metrics, resp. canonical transformation or symplectomorphism, if g_{1} and g_{2} are symplectic forms.

German nomenclature

```
contravariant = kontravariant
index = Index
metric tensor = metrischer Tensor, Metrik
pull-back = Rückzug
scalar product = Skalarprodukt
tensor = Tensor
```

covariant $=$ kovariant
isometry $=$ Isometrie non-degenerate $=$ nicht entartet riemannian metric $=$ Riemannsche Metrik symplectic form $=$ symplektische Form tensor product $=$ Tensorprodukt

5 Differential forms and the exterior derivative

In this section we discuss special types of tensors, so called differential forms or k-forms. A k form is a tensor of type $(0, k)$ that is alternating, i.e. skew-symmetric in all arguments. For $k=1$ these are just the 1 -forms or covectors. A k-form takes k vectors as arguments and defines a k-dimensional volume spanned by these k-vectors. Hence, as we will see in the next section, one can integrate k-forms over k-dimensional manifolds.
5.1 Definition. Alternating k-forms and the exterior product of covectors

Let V be a real n-dimensional vector space.
(a) A tensor $\omega \in V_{k}^{0}, 1 \leq k \leq n$, is called alternating, if it is skew-symmetric in all arguments, i.e. if for all vectors $u_{1}, \ldots, u_{k} \in V$ and permutations $\pi \in S_{k}$ it holds that

$$
\omega\left(u_{\pi(1)}, \ldots, u_{\pi(k)}\right)=\operatorname{sgn}(\pi) \omega\left(u_{1}, \ldots,, u_{k}\right)
$$

In particular, the exchange of two arguments changes the sign of ω.
The subspace of alternating tensors in V_{k}^{0} is denoted by Λ_{k} and its elements are called exterior forms, alternating k-forms, or just k-forms. One defines $\Lambda_{0}:=V_{0}^{0}:=\mathbb{R}$.
(b) The exterior product (or wedge product) $v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}$ of k covectors is defined as

$$
\left(v_{1}^{*} \wedge \cdots \wedge v_{k}^{*} \mid u_{1}, \ldots, u_{k}\right):=\operatorname{det}\left(\left(v_{i}^{*} \mid u_{j}\right)\right) .
$$

Skew-symmetry of the determinant under permutations of the columns implies that $v_{1}^{*} \wedge$ $\cdots \wedge v_{k}^{*}$ is alternating and thus $v_{1}^{*} \wedge \cdots \wedge v_{k}^{*} \in \Lambda_{k}$. Analogously, skew-symmetry of the determinant under permutations of the rows implies that

$$
\begin{equation*}
v_{\pi(1)}^{*} \wedge \cdots \wedge v_{\pi(k)}^{*}=\operatorname{sgn}(\pi) v_{1}^{*} \wedge \cdots \wedge v_{k}^{*} \tag{5.1}
\end{equation*}
$$

Finally, using the Leibniz formula for the determinant, we note that

$$
\begin{equation*}
v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}=\sum_{\pi \in S_{k}} \operatorname{sgn}(\pi) v_{\pi(1)}^{*} \otimes \cdots \otimes v_{\pi(k)}^{*} \tag{5.2}
\end{equation*}
$$

5.2 Reminder. An alternating k-form ω defines the signed "volume" that is spanned by k vectors v_{1}, \ldots, v_{k} in $T_{x} M$ via

$$
\omega\left(v_{1}, \ldots, v_{k}\right)=: \operatorname{vol}_{k}\left(v_{1}, \ldots, v_{k}\right)
$$

Here "volume" is to be understood in a dimension-dependent sense. For $k=1$ it means length, for $k=2$ area, and for $k=3$ volume in the usual sense. In case you are not familiar with the connection between alternating forms and volume it is recommended that you read e.g. the section "Heuristics of volume measurement" in the book Introduction to smooth manifolds by John M. Lee.

5.3 Proposition. A basis for Λ_{k}

Let $\left(e^{j}\right)_{j=1, \ldots, n}$ be a basis of V^{*} and $1 \leq k \leq n$, then the k-forms

$$
e^{j_{1}} \wedge \cdots \wedge e^{j_{k}} \quad \text { with } \quad 1 \leq j_{1}<\cdots<j_{k} \leq n
$$

form a basis of the space of alternating k-forms $\Lambda_{k} \subset V_{k}^{0}$. Thus, $\operatorname{dim}\left(\Lambda_{k}\right)=\binom{n}{k}$, and, in particular, $\Lambda_{n}=\Lambda_{0}=\mathbb{R}$ and $\Lambda_{k}=\{0\}$ for $k>n$.

5 Differential forms and the exterior derivative

Proof. First note that because of (5.1) all other wedge products $e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}$ of k basis vectors than those with $1 \leq j_{1}<\cdots<j_{k} \leq n$ are either zero (if the same basis vector appears twice) or are a linear multiple of the corresponding product with indices ordered increasingly.
Let $\omega \in \Lambda_{k}$ and let $\left(e_{i}\right)_{i=1, \ldots, n}$ be the dual basis to $\left(e^{j}\right)_{j=1, \ldots, n}$. Then for $u_{1}, \ldots, u_{k} \in V$ we have $u_{j}=\sum_{i=1}^{n} e^{i}\left(u_{j}\right) e_{i}$ for $j=1, \ldots, k$ and

$$
\begin{aligned}
\omega\left(u_{1}, \ldots, u_{k}\right) & =\omega\left(\sum_{i_{1}=1}^{n} e^{i_{1}}\left(u_{1}\right) e_{i_{1}}, \ldots, \sum_{i_{k}=1}^{n} e^{i_{k}}\left(u_{k}\right) e_{i_{k}}\right) \\
& =\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} e^{i_{1}}\left(u_{1}\right) \cdots e^{i_{k}}\left(u_{k}\right) \omega\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \\
& =\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n}\left(e^{i_{1}} \otimes \cdots \otimes e^{i_{k}} \mid u_{1}, \ldots, u_{k}\right) \frac{1}{k!} \sum_{\pi \in S_{k}} \operatorname{sgn}(\pi) \omega\left(e_{i_{\pi(1)}}, \ldots, e_{i_{\pi(k)}}\right) \\
& \stackrel{j_{\ell}:=i_{\pi(\ell)}}{=} \frac{1}{k!} \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \sum_{\pi \in S_{k}} \operatorname{sgn}(\pi)\left(e^{j_{\pi-1}(1)} \otimes \cdots \otimes e^{j_{\pi}-1(k)} \mid u_{1}, \ldots, u_{k}\right) \\
& =\frac{1}{k!} \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)\left(e^{j_{1}} \wedge \cdots \wedge e^{j_{k}} \mid u_{1}, \ldots, u_{k}\right) \\
& =\sum_{j_{1}=1}^{n-k+1} \sum_{j_{2}=j_{1}+1}^{n-k+2} \cdots \sum_{j_{k}=j_{k-1}+1}^{n} \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)\left(e^{j_{1}} \wedge \cdots \wedge e^{j_{k}} \mid u_{1}, \ldots, u_{k}\right)
\end{aligned}
$$

Thus

$$
\omega=\sum_{i_{1}=1}^{n-k+1} \sum_{i_{2}=i_{1}+1}^{n-k+2} \ldots \sum_{i_{k}=i_{k-1}+1}^{n} \omega_{i_{1} \cdots i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}
$$

with the skew-symmetric coefficients $\omega_{i_{1} \cdots i_{k}}=\omega\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$.
5.4 Remark. According to (4.1) we have the basis representation $\omega=\omega_{i_{1} \cdots i_{k}} e^{i_{1}} \otimes \cdots \otimes e^{i_{k}}$ in V_{k}^{0}. When using the basis representation in Λ_{k}, we will often abbreviate $J=\left(j_{1}, \ldots, j_{k}\right)$ with $1 \leq j_{1}<\cdots<j_{k} \leq n$ for an ordered multi-index and $e^{J}:=e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}$. Then

$$
\omega=\sum_{J} \omega_{J} e^{J}
$$

Sometimes one wants to avoid restricting the sum to ordered multi-indices, in particular when using the index calculus and the Einstein summation convention. Then one has

$$
\omega=\frac{1}{k!} \sum_{(i)} \omega_{i_{1} \cdots i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}=\frac{1}{k!} \omega_{i_{1} \cdots i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}
$$

where

$$
\sum_{(i)}:=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n}
$$

was abbreviated in the first expression and the Einstein summation convention was used in the second term. Be warned that some authors absorb the normalisation $\frac{1}{k!}$ into the definition of the coefficients $\omega_{i_{1} \cdots i_{k}}$.

5.5 Proposition. The projection onto Λ_{k}

Let $P_{k}: V_{k}^{0} \rightarrow \Lambda_{k}$ be defined by

$$
\left(P_{k} t\right)\left(u_{1}, \ldots, u_{k}\right):=\frac{1}{k!} \sum_{\pi \in S_{k}} \operatorname{sgn}(\pi) t\left(u_{\pi(1)}, \ldots, u_{\pi(k)}\right) \quad \text { for all } \quad u_{1}, \ldots, u_{k} \in V .
$$

Then P_{k} is a linear projection and it holds that

$$
v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}=k!P_{k}\left(v_{1}^{*} \otimes \cdots \otimes v_{k}^{*}\right) .
$$

Proof. To see that P_{k} is a projection, just compute

$$
\begin{aligned}
&\left(P_{k} P_{k} t\right)\left(u_{1}, \ldots, u_{k}\right)=\frac{1}{(k!)^{2}} \sum_{\pi, \pi^{\prime} \in S_{k}} \operatorname{sgn}(\pi) \operatorname{sgn}\left(\pi^{\prime}\right) t\left(u_{\pi^{\prime}(\pi(1))}, \ldots, u_{\pi^{\prime}(\pi(k))}\right) \\
& \sigma:=\frac{\pi^{\prime} \circ \pi}{=} \frac{1}{(k!)^{2}} \sum_{\pi \in S_{k}} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) t\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right) \\
&=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) t\left(u_{\sigma(1)}, \ldots, u_{\sigma(k)}\right)=\left(P_{k} t\right)\left(u_{1}, \ldots, u_{k}\right) .
\end{aligned}
$$

The second claim follows from (5.2).
Since the tensor product $\omega \otimes \nu \in V_{k+p}^{0}$ of two alternating forms $\omega \in \Lambda_{k}, \nu \in \Lambda_{p}$, is in general not alternating, one introduces the so called exterior product of alternating forms. It is basically defined as the tensor product $\omega \otimes \nu$ followed by skew-symmetrisation, i.e. by projection onto the skew-symmetric subspace Λ_{k+p} of V_{k+p}^{0}.

5.6 Definition. The exterior product of exterior forms

We extend the exterior product (wedge product) to alternating forms by putting

$$
\begin{aligned}
\wedge: \Lambda_{k} \times \Lambda_{p} & \rightarrow \Lambda_{k+p} \\
\left(\omega_{1}, \omega_{2}\right) & \mapsto \omega_{1} \wedge \omega_{2}:=\frac{(k+p)!}{k!p!} P_{k+p}\left(\omega_{1} \otimes \omega_{2}\right)
\end{aligned}
$$

5.7 Example. The wedge product of two 1 -forms ω and ν is

$$
\omega \wedge \nu=2 P_{2}(\omega \otimes \nu)=2 \frac{1}{2}(\omega \otimes \nu-\nu \otimes \omega)=\omega \otimes \nu-\nu \otimes \omega .
$$

5.8 Proposition. The exterior product of exterior forms has the following properties:

$$
\begin{array}{rllll}
\left(\omega_{1} \wedge w_{2}\right) \wedge \omega_{3} & =\omega_{1} \wedge\left(w_{2} \wedge w_{3}\right) & \text { for } & \omega_{1} \in \Lambda_{k}, \omega_{2} \in \Lambda_{p}, \omega_{3} \in \Lambda_{q} & \text { (associativity) } \\
\left(\omega_{1}+\omega_{2}\right) \wedge \omega_{3} & =\omega_{1} \wedge \omega_{3}+\omega_{2} \wedge \omega_{3} & \text { for } & \omega_{1}, \omega_{2} \in \Lambda_{k}, \omega_{3} \in \Lambda_{q} & \text { (distributivity) } \\
\omega_{1} \wedge\left(\omega_{2}+\omega_{3}\right) & =\omega_{1} \wedge \omega_{2}+\omega_{1} \wedge \omega_{3} & \text { for } & \omega_{1} \in \Lambda_{k}, \omega_{2}, \omega_{3} \in \Lambda_{q} & \text { (distributivity) } \\
\omega_{1} \wedge \omega_{2} & =(-1)^{k p} \omega_{2} \wedge \omega_{1} & \text { for } & \omega_{1} \in \Lambda_{k}, \omega_{2} \in \Lambda_{p} . &
\end{array}
$$

Proof. The first claim follows from

$$
\begin{aligned}
\left(\omega_{1} \wedge w_{2}\right) \wedge \omega_{3} & =\frac{(k+p+q)!}{(k+p)!q!} \frac{(k+p)!}{k!p!} P_{k+p+q}\left(P_{k+p}\left(\omega_{1} \otimes \omega_{2}\right) \otimes \omega_{3}\right) \\
& =\frac{(k+p+q)!}{k!p!q!} P_{k+p+q}\left(\omega_{1} \otimes \omega_{2} \otimes \omega_{3}\right)
\end{aligned}
$$

and a similar computation for $\omega_{1} \wedge\left(w_{2} \wedge w_{3}\right)$. Note that the last step in the previous computation follows from a straightforward but tedious calculation as in the proof of proposition 5.5. Distributivity of the wedge product follows directly from distributivity of the tensor product. The final claim is a homework assignment.

5.9 Definition. The inner product of exterior forms

The inner product of exterior forms with respect to a non-degenerate $g \in V_{2}^{0}$ is the bilinear map

$$
\begin{aligned}
i: \Lambda_{\ell} \times \Lambda_{k} & \rightarrow \Lambda_{k-\ell}, \quad \ell \leq k \\
(\nu, \omega) & \mapsto i_{\nu} \omega
\end{aligned}
$$

that is inductively defined by the following rules
(i) $i_{\nu} \omega:=G(\nu, \omega)$ for $\omega, \nu \in \Lambda_{1}$ (cf. defintion 4.12)
(ii) $i_{\nu}\left(\omega_{1} \wedge \omega_{2}\right):=\left(i_{\nu} \omega_{1}\right) \wedge \omega_{2}+(-1)^{k_{1}} \omega_{1} \wedge i_{\nu} \omega_{2}$ for $\nu \in \Lambda_{1}$ and $\omega_{i} \in \Lambda_{k_{i}}$
(iii) $i_{\nu_{1} \wedge \nu_{2}}=i_{\nu_{2}} \circ i_{\nu_{1}}$
together with bilinearity.
In components one finds for $\omega=\frac{1}{k!} \omega_{j_{1} \cdots j_{k}} e^{j_{1} \cdots j_{k}}$ and $\nu=\frac{1}{\ell!} \nu_{i_{1} \cdots i_{\ell}} e^{i_{1} \cdots i_{\ell}}$ that

$$
i_{\nu} \omega=\frac{1}{\ell!(k-\ell)!} \nu^{j_{1} \cdots j_{\ell}} \omega_{j_{1} \cdots j_{\ell} j_{\ell+1} \cdots j_{k}} e^{j_{\ell+1}} \wedge \cdots \wedge e^{j_{k}}
$$

In particular, for $k=\ell$ we have $i_{\nu} \omega=\frac{1}{k!} G(\nu, \omega)$.

5.10 Definition. The canonical volume form

Let V be a n-dimensional real vector space, $\left(e_{1}, \ldots, e_{n}\right)$ a basis of $V, g \in V_{2}^{0}$ non-degenerate, and $g=g_{i j} e^{i} \otimes e^{j}$. The canonical volume form associated with $g \in V_{2}^{0}$ is defined as

$$
\varepsilon:=\sqrt{\left|\operatorname{det}\left(g_{i j}\right)\right|} e^{1} \wedge e^{2} \wedge \cdots \wedge e^{n}
$$

You will show as a homework assignment that ε depends only on the orientation of the chosen basis. By definition, two bases $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(\tilde{e}_{1}, \ldots, \tilde{e}_{n}\right)$ have the same orientation, if the matrix associated with the basis change has positive determinant, i.e. if $\operatorname{det}\left(e^{i}\left(\tilde{e}_{j}\right)\right)>0$. If $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(\tilde{e}_{1}, \ldots, \tilde{e}_{n}\right)$ have the same orientation, then $\varepsilon=\tilde{\varepsilon}$, otherwise $\varepsilon=-\tilde{\varepsilon}$.

Since Λ_{k} and Λ_{n-k} both have dimension $\binom{n}{k}$, we can identify the two spaces using a non-degenerate $g \in V_{2}^{0}$ and an orientation of V, i.e. a choice of the sign of its associated volume form ε.

5.11 Definition. The Hodge isomorphism

Let V be a n-dimensional oriented real vector space, $g \in V_{2}^{0}$ non-degenerate, and ε the corresponding volume form. For $0 \leq k \leq n$ the linear bijection

$$
\begin{aligned}
*: \Lambda_{k} & \rightarrow \Lambda_{n-k} \\
\omega & \mapsto * \omega:=i_{\omega} \varepsilon
\end{aligned}
$$

is called Hodge isomorphism, Hodge duality, or Hodge star operator.
5.12 Remark. Properties of $*$ and ε

Let $g \in V_{2}^{0}$ be non-degenerate and $g=g_{i j} e^{i} \otimes e^{j}$ its representation with respect to a basis $\left(e^{j}\right)$ of V^{*}.
(i) The coefficients of ε are

$$
\varepsilon_{j_{1} \cdots j_{n}}=\left\{\begin{array}{cl}
0 & \text { if } j_{l}=j_{k} \text { for } l \neq k \\
\operatorname{sgn}(\pi) \cdot \sqrt{|\operatorname{det} g|} & \text { if }\left(j_{1}, \ldots, j_{n}\right)=\pi(1, \ldots, n) \quad \text { for some } \pi \in S_{n}
\end{array}\right.
$$

where $\operatorname{det} g:=\operatorname{det}\left(g_{i j}\right)$. (Note that $\operatorname{det} g$ depends on the chosen basis, since $g_{i j}$ does not transform like the matrix of a linear map!)
(ii) For $1 \in \Lambda_{0}$ it holds that

$$
* 1=i_{1} \varepsilon:=\varepsilon,
$$

and vice-versa that

$$
\begin{aligned}
* \varepsilon=i_{\varepsilon} \varepsilon & =\frac{1}{n!} \varepsilon_{j_{1} \cdots j_{n}} \varepsilon_{i_{1} \cdots i_{n}} g^{j_{1} i_{1}} \cdots g^{j_{n} i_{n}} \\
& =|\operatorname{det} g| \frac{1}{n!} \sum_{\pi, \pi^{\prime} \in S_{n}} \operatorname{sgn}(\pi) \operatorname{sgn}\left(\pi^{\prime}\right) g^{\pi(1) \pi^{\prime}(1)} \cdots g^{\pi(n) \pi^{\prime}(n)} \\
& =|\operatorname{det} g| \operatorname{det} g^{-1}=:(-1)^{s},
\end{aligned}
$$

where $\operatorname{det} g^{-1}:=\operatorname{det}\left(g^{i j}\right)$ and thus $s=0$ if g is a metric.
(iii) If g is symmetric, then $\left.* \circ *\right|_{\Lambda_{k}}=(-1)^{k(n-k)+s} \mathrm{id}_{\Lambda_{k}}$.
(Homework assignment)
(iv) $i_{\nu} * \omega=i_{\nu} i_{\omega} \varepsilon=i_{\omega \wedge \nu} \varepsilon=*(\omega \wedge \nu)$

5.13 Definition. Differential forms on manifolds

On a smooth manifold M we denote the space of tensor fields $\omega \in \mathcal{T}_{k}^{0}(M)$ that take values in the alternating k-forms on $T_{x} M$ by $\Lambda_{k}(M)$ and call $\omega \in \Lambda_{k}(M)$ a differential k-form or just k-form. In particular, $\Lambda_{0}(M)=C^{\infty}(M)$ and $\Lambda_{1}(M)=\mathcal{T}_{1}^{0}(M)$.
Note also that the fibre-wise wedge product defines a bilinear map

$$
\wedge: \Lambda_{k}(M) \times \Lambda_{p}(M) \rightarrow \Lambda_{k+p}(M), \quad(\omega, \nu) \mapsto \omega \wedge \nu \quad \text { with } \quad(\omega \wedge \nu)(x)=\omega(x) \wedge \nu(x) .
$$

5.14 Proposition. Pull-backs of exterior products

Let $\omega \in \Lambda_{k}(M), \nu \in \Lambda_{p}(M)$, and $f: N \rightarrow M$ smooth. Then

$$
f^{*}(\omega \wedge \nu)=f^{*} \omega \wedge f^{*} \nu,
$$

and

$$
\begin{equation*}
f^{*}\left(\sum_{J} \omega_{J} \mathrm{~d} q^{j_{1}} \wedge \cdots \wedge \mathrm{~d} q^{j_{k}}\right)=\sum_{J}\left(\omega_{J} \circ f\right) \mathrm{d}\left(q^{j_{1}} \circ f\right) \wedge \cdots \wedge \mathrm{d}\left(q^{j_{k}} \circ f\right) . \tag{5.3}
\end{equation*}
$$

Proof. Both claims follow from the definition 4.20 and proposition 3.14 about the pull-back of a differential.

We saw that the exterior derivative of a function $f \in \Lambda_{0}$ is a 1 -form $\mathrm{d} f \in \Lambda_{1}$. We will now generalise the exterior derivative to a map $\mathrm{d}: \Lambda_{k}(M) \rightarrow \Lambda_{k+1}(M)$.

5.15 Definition. The exterior derivative in a chart

Let $\omega \in \Lambda_{p}(U)$ for an open subset $U \subset \mathbb{R}^{n}$ and

$$
\omega=\sum_{I} \omega_{I} \mathrm{~d} e^{i_{1}} \wedge \cdots \wedge \mathrm{~d} e^{i_{p}} \quad \text { with } \quad \omega_{I} \in C^{\infty}(U) .
$$

Then its exterior derivative $\mathrm{d} \omega \in \Lambda_{p+1}(U)$ is defined by

$$
\mathrm{d} \omega:=\sum_{(i)} \mathrm{d} \omega_{I} \wedge \mathrm{~d} e^{i_{1}} \wedge \cdots \wedge \mathrm{~d} e^{i_{p}} .
$$

For a smooth manifold $M, \omega \in \Lambda_{p}(M)$, and (V, φ) a chart, the exterior derivative $\mathrm{d} \omega \in$ $\Lambda_{p+1}(M)$ is defined locally by $\left.\mathrm{d} \omega\right|_{V}:=\varphi^{*} \mathrm{~d}\left(\varphi_{*} \omega\right)$, i.e. for

$$
\left.\omega\right|_{V}=\sum_{I} \omega_{I} \mathrm{~d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{p}} \quad \text { with } \quad \omega_{I} \in C^{\infty}(M)
$$

we define

$$
\left.\mathrm{d} \omega\right|_{V}:=\sum_{I} \mathrm{~d} \omega_{I} \wedge \mathrm{~d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{p}}
$$

5.16 Proposition. The exterior derivative: global definition

For two charts $\left(V_{1}, \varphi_{1}\right)$ and $\left(V_{2}, \varphi_{2}\right)$ on M and $\omega \in \Lambda_{p}(M)$ it holds that

$$
\varphi_{1}^{*}\left(\left.\mathrm{~d}\left(\varphi_{1 *} \omega\right)\right|_{\varphi_{1}\left(V_{1} \cap V_{2}\right)}\right)=\varphi_{2}^{*}\left(\left.\mathrm{~d}\left(\varphi_{2 *} \omega\right)\right|_{\varphi_{2}\left(V_{1} \cap V_{2}\right)}\right)
$$

and thus the exterior derivative $\mathrm{d} \omega \in \Lambda_{p+1}(M)$ is uniquely defined by the local expressions.
More generally, it holds for any diffeomorphism $\Phi: M \rightarrow N, \omega \in \Lambda_{p}(N)$, and chart (V, φ) on M that

$$
\Phi^{*}\left(\left.\mathrm{~d} \omega\right|_{\Phi(V)}\right)=\left.\mathrm{d} \Phi^{*} \omega\right|_{V}
$$

and thus $\Phi^{*} \mathrm{~d} \omega=\mathrm{d} \Phi^{*} \omega$.
Proof. Let (V, φ) be a chart on M and $(\tilde{V}, \tilde{\varphi})=\left(\Phi(V), \varphi \circ \Phi^{-1}\right)$ its push-forward to $\Phi(V) \subset N$. For $\omega=\sum_{I} \omega_{I} \mathrm{~d} \tilde{q}^{I} \in \Lambda_{p}(N)$ we compute that

$$
\begin{aligned}
\left.\mathrm{d} \Phi^{*} \omega\right|_{V} & \stackrel{\sqrt[5.3]{=}}{=} \mathrm{d}\left(\sum_{I}\left(\omega_{I} \circ \Phi\right) \Phi^{*}\left(\mathrm{~d} \tilde{q}^{i_{1}}\right) \wedge \cdots \wedge \Phi^{*}\left(\mathrm{~d} \tilde{q}^{i_{p}}\right)\right) \\
& \stackrel{\boxed{3.14}}{=} \mathrm{d}\left(\sum_{I}\left(\omega_{I} \circ \Phi\right) \mathrm{d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{p}}\right) \\
& \stackrel{\text { Def. }}{=} \sum_{I} \mathrm{~d}\left(\omega_{I} \circ \Phi\right) \wedge \mathrm{d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{p}} \\
& \stackrel{3.14}{=} \sum_{I} \Phi^{*}\left(\mathrm{~d} \omega_{I}\right) \wedge \Phi^{*}\left(\mathrm{~d} \tilde{q}^{i_{1}}\right) \wedge \cdots \wedge \Phi^{*}\left(\mathrm{~d} \tilde{q}^{i_{p}}\right) \stackrel{\sqrt[5.3]{=}}{=} \Phi^{*}\left(\left.\mathrm{~d} \omega\right|_{\Phi(V)}\right)
\end{aligned}
$$

Applying this general result to the diffeomorphism $\Phi: \varphi_{2}(U) \rightarrow \varphi_{1}(U), \Phi=\varphi_{1} \circ \varphi_{2}^{-1}$ on $U:=V_{1} \cap V_{2}$ yields

$$
\begin{aligned}
\varphi_{1}^{*}\left(\left.\mathrm{~d}\left(\varphi_{1 *} \omega\right)\right|_{\varphi_{1}(U)}\right) & =\varphi_{2}^{*}\left(\varphi_{2}^{-1}\right)^{*} \varphi_{1}^{*}\left(\left.\mathrm{~d}\left(\varphi_{1 *} \omega\right)\right|_{\varphi_{1}(U)}\right)=\varphi_{2}^{*} \Phi^{*}\left(\left.\mathrm{~d}\left(\varphi_{1 *} \omega\right)\right|_{\varphi_{1}(U)}\right) \\
& =\varphi_{2}^{*}\left(\left.\mathrm{~d}\left(\Phi^{*} \varphi_{1 *} \omega\right)\right|_{\varphi_{2}(U)}\right)=\varphi_{2}^{*}\left(\left.\mathrm{~d}\left(\varphi_{2 *} \omega\right)\right|_{\varphi_{2}(U)}\right)
\end{aligned}
$$

where we used that because of the chain rule we have $\Phi^{*}=\left(\varphi_{2}^{-1}\right)^{*} \varphi_{1}^{*}=\varphi_{2 *}\left(\varphi_{1}^{-1}\right)_{*}$.

5.17 Proposition. Properties of the exterior derivative

From the definition we can conclude the following properties of the exterior derivative:
(a) $\mathrm{d}\left(\omega_{1}+\omega_{2}\right)=\mathrm{d} \omega_{1}+\mathrm{d} \omega_{2} \quad$ for all $\omega_{i} \in \Lambda_{p}(M)$
(b) $\mathrm{d}(f \omega)=\mathrm{d} f \wedge \omega+f \mathrm{~d} \omega \quad$ for all $f \in C^{\infty}$ and $\omega \in \Lambda_{p}$
(c) $\mathrm{d}\left(\omega_{1} \wedge \omega_{2}\right)=\mathrm{d} \omega_{1} \wedge \omega_{2}+(-1)^{p} \omega_{1} \wedge \mathrm{~d} \omega_{2} \quad$ for all $\omega_{1} \in \Lambda_{p}, \omega_{2} \in \Lambda_{k}$
(d) $\mathrm{d}(\mathrm{d} \omega)=0$ for all $\omega \in \Lambda_{p}$

Proof. (a) is obvious and (b) follows directly from the definition, and (c) follows from the observation that one has to commute the exterior derivatives of the coefficients of ω_{2} through the p-form ω_{1} when comparing the right side with the left side of the claimed equality. Finally, (d) results from the commutativity of partial derivatives,

$$
\left.\mathrm{d}(\mathrm{~d} \omega)\right|_{V}=\sum_{I} \sum_{j, k} \frac{\partial^{2} \omega_{I}}{\partial q_{k} \partial q_{j}} \mathrm{~d} q^{k} \wedge \mathrm{~d} q^{j} \wedge \mathrm{~d} q^{I}=\sum_{I} \sum_{j<k}\left(\frac{\partial^{2} \omega_{I}}{\partial q_{k} \partial q_{j}}-\frac{\partial^{2} \omega_{I}}{\partial q_{j} \partial q_{k}}\right) \mathrm{d} q^{k} \wedge \mathrm{~d} q^{j} \wedge \mathrm{~d} q^{I}=0
$$

5.18 Proposition. Naturality of the exterior derivative

Let $f: M \rightarrow N$ be smooth and $\omega \in \Lambda_{p}(N)$, then

$$
f^{*} \mathrm{~d} \omega=\mathrm{d}\left(f^{*} \omega\right) .
$$

Proof. Homework assignment (Look at the computation in the proof of proposition 5.16 and apply what we learned in proposition 5.17).

5.19 Remark. Restriction of differential forms

Let $N \subset M$ be a submanifold and $\psi: N \rightarrow M$ the natural injection. For $\omega \in \Lambda_{p}(M)$

$$
\psi^{*} \omega \in \Lambda_{p}(N)
$$

is called its restriction to N. According to proposition 5.18, restriction and exterior derivative commute,

$$
\psi^{*} \mathrm{~d} \omega=\mathrm{d}\left(\psi^{*} \omega\right) .
$$

5.20 Example. Vector differential operators in \mathbb{R}^{3} and the exterior derivative

Let $M=\mathbb{R}^{3}$ with the Euclidean metric $g_{i j}=\delta_{i j}$. We can identify vector fields and 1-forms using the canonical isomporphism ι_{g} (cf. remark 4.8) and for the components with respect to cartesian coordinates we have $v_{i}=v^{i}$. Let $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and $v \in \mathcal{T}_{0}^{1}\left(\mathbb{R}^{3}\right)$. Then we have the following relations between vector differential operators in \mathbb{R}^{3} and the exterior derivative:

$$
\begin{aligned}
\mathrm{d} f & =\frac{\partial f}{\partial q_{i}} \mathrm{~d} q^{i}=(\operatorname{grad} f)_{i} \mathrm{~d} q^{i}=\iota_{g}(\operatorname{grad} f) \\
* \mathrm{~d} \iota_{g}(v) & =*\left(\mathrm{~d}\left(v_{i} \mathrm{~d} q^{i}\right)\right)=*\left(\mathrm{~d} v^{i} \wedge \mathrm{~d} q^{i}\right)=*\left(\frac{\partial v_{i}}{\partial q_{k}} \mathrm{~d} q^{k} \wedge \mathrm{~d} q^{i}\right)=\varepsilon_{j k i} \frac{\partial v_{i}}{\partial q_{k}} \mathrm{~d} q^{j}=(\operatorname{curl} v)_{j} \mathrm{~d} q^{j} \\
& =\iota_{g}(\operatorname{curl} v) \\
* \mathrm{~d} * \iota_{g}(v) & =* \mathrm{~d}\left(v^{i} \frac{1}{2} \varepsilon_{i j k} \mathrm{~d} q^{j} \wedge \mathrm{~d} q^{k}\right)=*\left(\frac{1}{2} \varepsilon_{i j k} \mathrm{~d} v^{i} \wedge \mathrm{~d} q^{j} \wedge \mathrm{~d} q^{k}\right)=*\left(\frac{1}{2} \varepsilon_{i j k} \frac{\partial v^{i}}{\partial q_{l}} \mathrm{~d} q^{l} \wedge \mathrm{~d} q^{j} \wedge \mathrm{~d} q^{k}\right) \\
& =\frac{1}{2} \varepsilon_{i j k} \frac{\partial v^{i}}{\partial q_{l}} \varepsilon_{l j k}=\sum_{i} \frac{\partial v_{i}}{\partial q_{i}}=\operatorname{div} v .
\end{aligned}
$$

The properties of the exterior derivative from proposition 5.17 can now be translated to the differential operators. From (b) we conclude:

- For $p=k=0$ it follows from $\mathrm{d}(f \cdot g)=f \mathrm{~d} g+g \mathrm{~d} f$ that $\operatorname{grad}(f \cdot g)=f \operatorname{grad} g+g \operatorname{grad} f$
- For $p=0, k=1$ it follows from $\mathrm{d}(f \omega)=\mathrm{d} f \wedge \omega+f \mathrm{~d} \omega$ that $\operatorname{curl}(f v)=\operatorname{grad} f \times v+f \operatorname{curl} v$ From (c) we conclude:
- For $p=0$ it follows from $\mathrm{d}(\mathrm{d} f)=0$ that curl $\operatorname{grad} f=0$
- For $p=1$ it follows from $0=* \mathrm{~d} d \omega=* \mathrm{~d} * * \mathrm{~d} \omega$ that $\operatorname{div} \operatorname{curl} v=0$.

5.21 Definition. Closed and exact forms

A p-form ω is called closed if $\mathrm{d} \omega=0$. It is called exact if $\omega=\mathrm{d} \nu$ for some $\nu \in \Lambda_{p-1}(M)$, i.e. if it has a primitive.
Because of proposition 5.17 (c) we have

$$
\omega \text { is exact } \Rightarrow \omega \text { is closed. }
$$

The converse holds, in general, only locally.
We state two versions of the so called Poincaré lemma, the classical one and a slightly more general statement.

5.22 Theorem. Poincaré lemma (version 1)

Let $\omega \in \Lambda_{p}(M)$ be closed, i.e. $\mathrm{d} \omega=0$. Let $V \subset M$ be open and diffeomorphic to a star-shaped domain of \mathbb{R}^{n}. Then there exists $\nu \in \Lambda_{p-1}(V)$ such that $\left.\omega\right|_{V}=\mathrm{d} \nu$.

Proof. The following proof reduces the problem to the Poincaré lemma in \mathbb{R}^{n}. Let $\varphi: V \rightarrow U \subset$ \mathbb{R}^{n} be a diffeomorphism to the star-shaped domain $U \subset \mathbb{R}^{n}$. Then $\tilde{\omega}:=\varphi_{*} \omega$ is a closed p-form on U and according to the Poincaré lemma on \mathbb{R}^{n} (which we will show below) there exists a primitive $\tilde{\nu} \in \Lambda_{p-1}(U)$ with $\tilde{\omega}=\mathrm{d} \tilde{\nu}$. But then $\nu:=\varphi^{*} \tilde{\nu}$ is a primitive for ω since $\mathrm{d} \varphi^{*} \tilde{\nu}=\varphi^{*} \mathrm{~d} \tilde{\nu}=\varphi^{*} \tilde{\omega}=\omega$. We now show the Poincaré lemma on \mathbb{R}^{n}. Assume without loss of generality that $U \subset \mathbb{R}^{n}$ is star-shaped with respect to the origin. We define the map $P^{p}: \Lambda_{p}(U) \rightarrow \Lambda_{p-1}(U)$ by setting for arbitrary $\omega \in \Lambda_{p}(U)$ with $\omega=\sum_{I} \omega_{I} \mathrm{~d} q^{I}$

$$
P^{p} \omega:=\sum_{I} \sum_{\alpha=1}^{p}(-1)^{\alpha-1}\left(\int_{0}^{1} t^{p-1} \omega_{I}(t q) q_{i_{\alpha}} \mathrm{d} t\right) \mathrm{d} q^{I^{\alpha}} .
$$

Recall the notation $I=\left(i_{1}, \ldots, i_{p}\right)$ for an ordered p-Tupel $1 \leq i_{1}<\cdots<i_{p} \leq n$ and $\mathrm{d} q^{I}=\mathrm{d} q^{i_{1}} \wedge$ $\cdots \wedge \mathrm{d} q^{i_{p}} \in \Lambda_{p}(U)$. Moreover, we also abbreviated $\mathrm{d} q^{I^{\alpha}}=\mathrm{d} q^{i_{1}} \wedge \cdots \wedge \widehat{\mathrm{~d} q^{i_{\alpha}}} \wedge \cdots \wedge \mathrm{d} q^{i_{p}} \in \Lambda_{p-1}(U)$, where the hat means that the corresponding factor is omitted.
We will show that $\omega=\mathrm{d} P^{p} \omega+P^{p+1} \mathrm{~d} \omega$. For closed ω this implies that $\omega=\mathrm{d}\left(P^{p} \omega\right)$, i.e. the existence of a primitive. We first compute

$$
\begin{aligned}
\mathrm{d} P^{p} \omega= & \sum_{\ell=1}^{n} \sum_{I} \sum_{\alpha=1}^{p}(-1)^{\alpha-1}\left(\int_{0}^{1} t^{p-1} \frac{\partial\left(\omega_{I}(t q) q_{i_{\alpha}}\right)}{\partial q_{\ell}} \mathrm{d} t\right) \mathrm{d} q^{\ell} \wedge \mathrm{d} q^{I^{\alpha}} \\
= & \sum_{I} \sum_{\ell \notin I} \sum_{\alpha=1}^{p}(-1)^{\alpha-1}\left(\int_{0}^{1} t^{p} \frac{\partial \omega_{I}}{\partial q_{\ell}}(t q) q_{i_{\alpha}} \mathrm{d} t\right) \mathrm{d} q^{\ell} \wedge \mathrm{d} q^{I^{\alpha}} \\
& +\sum_{I} \sum_{\alpha=1}^{p}\left(\int_{0}^{1} t^{p-1} \frac{\partial\left(\omega_{I}(t q) q_{i_{\alpha}}\right)}{\partial q_{i_{\alpha}}} \mathrm{d} t\right) \mathrm{d} q^{I} .
\end{aligned}
$$

On the other hand

$$
\mathrm{d} \omega=\sum_{I} \sum_{\ell \notin I} \frac{\partial \omega_{I}}{\partial q_{\ell}} \mathrm{d} q^{\ell} \wedge \mathrm{d} q^{I}
$$

and thus

$$
P^{p+1} \mathrm{~d} \omega=\sum_{I} \sum_{\ell \notin I}\left\{\left(\int_{0}^{1} t^{p} \frac{\partial \omega_{I}}{\partial q_{\ell}}(t q) q_{\ell} \mathrm{d} t\right) \mathrm{d} q^{I}+\sum_{\alpha=1}^{p}(-1)^{\alpha}\left(\int_{0}^{1} t^{p} \frac{\partial \omega_{I}}{\partial q_{\ell}}(t q) q_{i_{\alpha}} \mathrm{d} t\right) \mathrm{d} q^{\ell} \wedge \mathrm{d} q^{I^{\alpha}}\right\} .
$$

For the sum of the two terms we finally get

$$
\begin{aligned}
\mathrm{d} P^{p} \omega+P^{p+1} \mathrm{~d} \omega & =\sum_{I} \int_{0}^{1}\left(\sum_{\ell=1}^{n} t^{p} \frac{\partial \omega_{I}}{\partial q_{\ell}}(t q) q_{\ell}+p t^{p-1} \omega_{I}(t q)\right) \mathrm{d} t \mathrm{~d} q^{I} \\
& =\sum_{I} \int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(t^{p} \omega_{I}(t q)\right) \mathrm{d} t \mathrm{~d} q^{I}=\sum_{I} \omega_{I} \mathrm{~d} q^{I}=\omega .
\end{aligned}
$$

5.23 Theorem. Poincaré lemma (version 2)

Let $\omega \in \Lambda_{p}(M)$ be closed and let $V \subseteq M$ be a submanifold that is contractible in M, i.e. there exists a smooth function $F:[0,1] \times V \rightarrow M$ such that $F(0, \cdot)=\operatorname{id}_{V}$ and $F(1, \cdot \cdot) \equiv x_{0}$ for some $x_{0} \in M$. Then there exists $\nu \in \Lambda_{p-1}(V)$ such that $\left.\omega\right|_{V}=\mathrm{d} \nu$.

Proof. The proof uses the so called homotopy operator (cf. P^{p} in the previous proof) and will be developed in the homework assignments.

German nomenclature

```
alternating form = alternierende Form
closed form = abgeschlossene Differentialform
differential form = Differentialform
exterior derivative = äußere Ableitung
exterior product = äußeres Produkt
wedge product = Dachprodukt, Hutprodukt
```

canonical volume form $=$ kanonische Volumenform determinant $=$ Determinante
exact form $=$ exakte Differentialform exterior form $=$ äußere Form skew-symmetric $=$ schiefsymmetrisch

6 Integration on manifolds

In this chapter we discuss integration of n-forms over n-dimensional manifolds. Using pullbacks, this will, in particular, also result in a notion of integration of p-forms over p-dimensional submanifolds.

The sign of the integral of a differential n-form is only fixed after choosing an orientation of the manifold.

6.1 Definition. Orientation

In an oriented atlas $\left(V_{i}, \varphi_{i}\right)_{i \in I}$ all charts have the same orientation, i.e. for all transition functions $\Phi_{i j}:=\varphi_{i} \circ \varphi_{j}^{-1}$ it holds that $\operatorname{det} D \Phi_{i j}>0$.
An oriented manifold is a manifold with an oriented atlas. A manifold that allows for an oriented atlas is called orientable.
6.2 Remarks. (a) Not every manifold is orientable. For example the Möbius strip is not orientable.
(b) If a manifold is orientable, there are exactly two different orientations, i.e. equivalence classes of atlases with the same orientation. Given an orientation on a manifold, that is an oriented atlas, any chart from the same equivalence class of atlases is called positively oriented, all others are called negatively oriented.
(c) A nowhere vanishing volume form ω defines an orientation: If in the coordinate representation $\omega=\omega(q) \mathrm{d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n}$ with respect to a chart $\varphi(x)=q$ it holds that $\omega(q)>0$, then we say that the chart φ is positively oriented with respect to ω, otherwise it is negatively oriented.
To see that this really defines an orientation, let φ and $\tilde{\varphi}$ be two charts and let $\Phi=\tilde{\varphi} \circ \varphi^{-1}$. Because of $\mathrm{d} \tilde{q}^{j}=(D \Phi)_{i}^{j} \mathrm{~d} q^{i}$ we have with $\tilde{q}=\Phi(q)$ that

$$
\begin{aligned}
\omega=\tilde{\omega}(\tilde{q}) \mathrm{d} \tilde{q}^{1} \wedge \cdots \wedge \mathrm{~d} \tilde{q}^{n} & =\left.\left.(\tilde{\omega} \circ \Phi)(q) D \Phi_{j_{1}}^{1}\right|_{q} \cdots D \Phi_{j_{n}}^{n}\right|_{q} \mathrm{~d} q^{j_{1}} \wedge \cdots \wedge \mathrm{~d} q^{j_{n}} \\
& =(\tilde{\omega} \circ \Phi)(q) \operatorname{det}\left(\left.D \Phi\right|_{q}\right) \mathrm{d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n} \\
& =\omega(q) \mathrm{d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n}
\end{aligned}
$$

and thus

$$
\begin{equation*}
\omega(q)=(\tilde{\omega} \circ \Phi)(q) \operatorname{det}\left(\left.D \Phi\right|_{q}\right) . \tag{6.1}
\end{equation*}
$$

Hence $\omega(q)$ and $\tilde{\omega}(\tilde{q})$ have the same sign if and only if $\operatorname{det}\left(\left.D \Phi\right|_{q}\right)>0$.

6.3 Definition. Compact support

The support of a tensor field $t \in \mathcal{T}_{s}^{r}(M)$ is the set

$$
\operatorname{supp} t:=\overline{\{x \in M \mid t(x) \neq 0\}} \subset M
$$

We say that $t \in \mathcal{T}_{s}^{r}(M)$ is compactly supported if $\operatorname{supp} t$ is a compact set.

6.4 Definition. The integral on the domain of a single chart

Let (V, φ) be a chart from an oriented atlas of M and let $\omega \in \Lambda_{n}(M)$ have compact support in V. Then one defines

$$
\int_{M} \omega=\int_{V} \omega:=\int_{\varphi(V)} \varphi_{*} \omega:=\int_{\mathbb{R}_{+}^{n}} \omega(q) \mathrm{d}^{n} q
$$

6 Integration on manifolds

where

$$
\varphi_{*} \omega=: \omega(q) e^{1} \wedge \cdots \wedge e^{n} \in \Lambda_{n}\left(\mathbb{R}_{+}^{n}\right)
$$

and $\mathrm{d}^{n} q$ denotes the n-dimensional Lebesgue measure on \mathbb{R}^{n}.
6.5 Proposition. Up to orientation, $\int_{M} \omega$ is independent of the chosen chart.

Proof. Let φ and $\tilde{\varphi}$ be two charts on V with the same orientation and let $\Phi=\tilde{\varphi} \circ \varphi^{-1}$. The change of variables formula for integrals on \mathbb{R}^{n} implies

$$
\int_{\varphi(V)} \varphi_{*} \omega:=\int \omega(q) \mathrm{d}^{n} q \stackrel{(6.1)}{=} \int(\tilde{\omega} \circ \Phi)(q) \operatorname{det}\left(\left.D \Phi\right|_{q}\right) \mathrm{d}^{n} q \stackrel{\text { c.o.v. }}{=} \tilde{\omega}(\tilde{q}) \mathrm{d}^{n} \tilde{q}=\int_{\tilde{\varphi}(V)} \tilde{\varphi}_{*} \omega
$$

In order to integrate also forms that are not supported in the domain of a single chart, one decomposes the integration with the help of a partition of unity.

6.6 Definition. Partition of unity

Let M be a smooth manifold and $\mathcal{A}=\left(V_{i}, \varphi_{i}\right)_{i \in I}$ an atlas. A family of smooth functions $\left(\chi_{i}\right)_{i \in I}$, $\chi_{i}: M \rightarrow[0,1]$, is called an partition of unity adapted to \mathcal{A} if the following properties hold.
(a) Each χ_{i} is supported in the single chart $V_{i}, \operatorname{supp} \chi_{i} \subset V_{i}$.
(b) The partition is locally finite, i.e. each $x \in M$ has a neighbourhood U such that $U \cap$ $\operatorname{supp} \chi_{i} \neq \emptyset$ only for finitely many $i \in I$.
(c) The functions χ_{i} sum up to one everywhere: $\sum_{i \in I} \chi_{i}(x)=1$ for all $x \in M$.

Note that because of (b) the sum in (c) contains for any $x \in M$ only finitely many terms. \diamond

6.7 Remark. Existence of a partition of unity

If one assumes that a manifold is second countable, as we did in the definition of a manifold, then one can show that for any atlas $\left(V_{i}, \varphi_{i}\right)_{i \in I}$ an adapted partition of unity exists.
Moreover, if $K \subset M$ is compact, there exists a finite subcover $\left(V_{i_{j}}\right)_{j=1, \ldots, m}$ and an adapted partition of unity $\left(\chi_{j}\right)_{j=1, \ldots, m}$ such that $\sum_{j} \chi_{j}(x)=1$ for all $x \in K$.

In order to avoid additional technicalities, we will only discuss integration over compact regions. More precisely, we will integrate volume forms $\omega \in \Lambda_{n}(M)$ with compact support.

6.8 Remark. Behaviour at the boundary

The fact that the closed set $\operatorname{supp} \omega$ is contained in the open set V does not imply that ω vanishes on the boundary ∂M of M. For example, $V=\left[0, \frac{1}{2}\right)$ is a relatively open subset of $M=[0, \infty)$ and $K=\left[0, \frac{1}{4}\right]$ a compact subset of V.

6.9 Definition. The integral of volume forms

Let M be a smooth oriented manifold and $\left(V_{i}, \varphi_{i}\right)$ a positively oriented atlas. Let $\omega \in \Lambda_{n}(M)$ have compact support. Then

$$
\int_{M} \omega:=\sum_{j=1}^{m} \int_{V_{j}} \chi_{j} \omega
$$

where $\left(\chi_{j}\right)$ is a partition of unity adapted to the finite cover of $\operatorname{supp} \omega$ by charts $\left(V_{j}\right)$ such that $\sum_{j} \chi_{j}(x)=1$ for $x \in \operatorname{supp} \omega$. The summands on the right hand side are integrals as defined in definition 6.4.
6.10 Proposition. The value of $\int_{M} \omega$ does neither depend on the choice of the atlas nor on the choice of the partition of unity.

Proof. The independence from the choice of the charts has already been demonstrated in proposition 6.5. Let $\left(\tilde{\chi}_{j}\right)$ be another partition of unity adapted to $\left(V_{j}\right)$ with $\sum_{j} \tilde{\chi}_{j}(x)=1$ for $x \in \operatorname{supp} \omega$. Then

$$
\begin{aligned}
\sum_{j=1}^{m} \int_{\varphi_{j}\left(V_{j}\right)} \varphi_{j *}\left(\chi_{j} \omega\right) & =\sum_{j=1}^{m} \int_{\varphi_{j}\left(V_{j}\right)} \varphi_{j *}\left(\chi_{j} \sum_{i=1}^{m} \tilde{\chi}_{i} \omega\right) \\
& =\sum_{j, i=1}^{m} \int_{\varphi_{j}\left(V_{j} \cap V_{i}\right)} \varphi_{j *}\left(\chi_{j} \tilde{\chi}_{i} \omega\right)=\sum_{j, i=1}^{m} \int_{\varphi_{i}\left(V_{j} \cap V_{i}\right)} \varphi_{i *}\left(\chi_{j} \tilde{\chi}_{i} \omega\right) \\
& =\sum_{i=1}^{m} \int_{\varphi_{i}\left(V_{i}\right)} \varphi_{i *}\left(\sum_{j=1}^{m} \chi_{j} \tilde{\chi}_{i} \omega\right)=\sum_{i=1}^{m} \int_{\varphi_{i}\left(V_{i}\right)} \varphi_{i *}\left(\tilde{\chi}_{i} \omega\right),
\end{aligned}
$$

where we used proposition 6.5 in the third equality.
6.11 Example. Let $M=[a, b] \subset \mathbb{R}$ and $f \in C_{0}^{\infty}(M)$ (this does not imply that $f(a)=f(b)=0$ since M is compact). Then $\mathrm{d} f \in \Lambda_{1}(M)$ and $\operatorname{supp} \mathrm{d} f \subset \operatorname{supp} f$ is compact. In the canonical chart $\varphi=\operatorname{id}_{\mathbb{R}}$ one has

$$
\int_{M} \mathrm{~d} f=\int_{a}^{b} \frac{\partial f}{\partial x} \mathrm{~d} x=f(b)-f(a)=: \int_{\partial M} f .
$$

6.12 Definition. The integral on submanifolds

Let M be an n-dimensional smooth manifold, N a p-dimensional smooth manifold, and $\psi: N \rightarrow$ M smooth. (If $N \subset M$ is a submanifold, then $\psi: N \rightarrow M$ is just the inclusion map.) Let $\omega \in \Lambda_{p}(M)$ have compact support. Then one defines

$$
\int_{N} \omega:=\int_{N} \psi^{*} \omega .
$$

6.13 Definition. Orientation of the boundary

If M is an oriented manifold, then also its boundary ∂M is orientable and an orientation on M induces an orientation on ∂M : Let $\left(V_{i}, \varphi_{i}\right)$ be a positively oriented atlas on M, then we define $\left(\left.V_{i}\right|_{\partial M},\left.\varphi_{i}\right|_{\partial M}\right)$ to be negatively oriented. Put differently: if $\mathrm{d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n}$ is a positive volume form on M, then $-\mathrm{d} q^{2} \wedge \cdots \wedge \mathrm{~d} q^{n}$ is a positive volume form on ∂M.

We now formulate and prove the generalisation of the fundamental theorem of calculus to manifolds with boundary.

6.14 Theorem. Stokes theorem

Let M be an oriented manifold with boundary ∂M and let $\omega \in \Lambda_{n-1}(M)$ be compactly supported. Then

$$
\int_{M} \mathrm{~d} \omega=\int_{\partial M} \omega
$$

where ∂M inherits the orientation of M as in definition 6.13.
For integration on submanifolds this implies the following result.

6 Integration on manifolds

6.15 Corollary. Stokes theorem for submanifolds

Let M be a smooth manifold and $N \subset M$ an oriented submanifold of dimension p. Let $\omega \in$ $\Lambda_{p-1}(M)$ be compactly supported. Then

$$
\int_{N} \mathrm{~d} \omega=\int_{\partial N} \omega
$$

where again ∂N inherits the orientation of N.
The result holds as well if one replaces the submanifold $N \subset M$ by the image of p-dimensional manifold N under a smooth map $\psi: N \rightarrow M$.
6.16 Remarks. (a) An important special case of Stokes theorem is the observation that the integral of a compactly supported exact form over a manifold without boundary vanishes.
(b) On the on hand, the requirement in Stokes theorem that the integrand is compactly supported serves to avoid technical discussions of convergence of the integral. However, it is also important at the boundary: Consider, for example, $M=(a, b)$ with $\partial M=\emptyset$ and the function $f(x)=x$. Then

$$
\int_{a}^{b} \mathrm{~d} f=b-a \neq \int_{\partial M} f=0
$$

which does not contradict Stokes theorem since f is not compactly supported. On $M=[a, b]$ we have $\partial M=\{a, b\}$ and $f(x)=x$ is compactly supported.
(c) The fact that $\operatorname{dd} \omega=0$ for every $\omega \in \Lambda_{p}(M)$ corresponds to the fact that a boundary has no boundary, i.e. that $\partial \partial N=\emptyset$ for any manifold N :

$$
0=\int_{N} \mathrm{~d} \mathrm{~d} \omega=\int_{\partial N} \mathrm{~d} \omega=\int_{\partial \partial N} \omega=0 .
$$

Proof. of Stokes theorem.

Let $\left(V_{i}, \varphi_{i}\right)_{i=1, \ldots, m}$ be a finite cover of supp ω by positively oriented charts and $\left(\chi_{i}\right)$ an adapted partition of unity with $\sum_{i} \chi_{i}(x)=1$ for all $x \in \operatorname{supp} \omega$. Abbreviating $\omega=\sum_{i} \chi_{i} \omega=: \sum_{i} \omega_{i}$ we have

$$
\int_{M} \mathrm{~d} \omega=\sum_{i} \int_{V_{i}} \mathrm{~d} \omega_{i}
$$

and it suffices to show that $\int_{V_{i}} \mathrm{~d} \omega_{i}=\int_{\partial V_{i}} \omega_{i}$ for $i=1, \ldots, m$. In a boundary chart ω_{i} has the form

$$
\omega_{i}=\sum_{j=1}^{n} a_{j}(q) \mathrm{d} q^{1} \wedge \cdots \wedge \widehat{\mathrm{~d} q^{j}} \wedge \cdots \wedge \mathrm{~d} q^{n},
$$

and with $\Psi^{*} \mathrm{~d} q^{1}=0$ it holds that

$$
\left.\omega_{i}\right|_{\partial M}=\Psi^{*} \omega_{i}=a_{1}\left(0, q_{2}, \ldots, q_{n}\right) \mathrm{d} q^{2} \wedge \cdots \wedge \mathrm{~d} q^{n} .
$$

Computing

$$
\mathrm{d} \omega_{i}=\sum_{j=1}^{n} \frac{\partial a_{j}(q)}{\partial q_{j}}(-1)^{j-1} \mathrm{~d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n}
$$

we find that

$$
\begin{aligned}
\int_{M} \mathrm{~d} \omega_{i} & =\sum_{j=1}^{n} \int_{M} \frac{\partial a_{j}}{\partial q_{j}}(-1)^{j-1} \mathrm{~d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n} \\
& =\sum_{j=1}^{n} \int_{0}^{\infty} \mathrm{d} q_{1} \int_{-\infty}^{\infty} \mathrm{d} q_{2} \cdots \int_{-\infty}^{\infty} \mathrm{d} q_{n} \frac{\partial a_{j}(q)}{\partial q_{j}}(-1)^{j-1} \\
& =-\int_{-\infty}^{\infty} \mathrm{d} q_{2} \cdots \int_{-\infty}^{\infty} \mathrm{d} q_{n} a_{1}\left(0, q_{2}, \cdots, q_{n}\right) \\
& =-\int_{\mathbb{R}^{n-1}} a_{1}\left(0, q_{2}, \cdots, q_{n}\right) \mathrm{d} q^{2} \wedge \cdots \wedge \mathrm{~d} q^{n}=\int_{\partial M} \omega_{i}
\end{aligned}
$$

6.17 Examples. (a) Consider the annulus $M=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} \leq x^{2}+y^{2} \leq 1\right.\right\}$ and the 1-form $\omega=\frac{-y \mathrm{~d} x+x \mathrm{~d} y}{x^{2}+y^{2}}("=\mathrm{d} \theta$ " $)$. Then $\mathrm{d} \omega=0$, hence $\int_{M} \mathrm{~d} \omega=0$, and also

$$
\int_{\partial M} \omega=\int_{x^{2}+y^{2}=1} \omega+\int_{x^{2}+y^{2}=\frac{1}{2}} \omega=\int_{0}^{2 \pi} \mathrm{~d} \theta-\int_{0}^{2 \pi} \mathrm{~d} \theta=2 \pi-2 \pi=0 .
$$

Note that while locally ω is the differential of the angle function θ, it can't be exact on all of $M: \omega=\mathrm{d} \nu$ would imply that

$$
2 \pi=\int_{S^{1}} \omega=\int_{S^{1}} \mathrm{~d} \nu=\int_{\partial S^{1}} \nu=0
$$

since $\partial S^{1}=\emptyset$.

(b) The integral theorems from calculus are special cases of Stokes theorem (cf. example 5.20).
(i) Let $c: N=[0,1] \rightarrow M=\mathbb{R}^{n}$ be a curve in \mathbb{R}^{n} and let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

Then

$$
\begin{aligned}
\int_{N} \mathrm{~d} f & =\int_{N} \frac{\partial f}{\partial q_{j}} \mathrm{~d} q^{j}=\int_{C} \operatorname{grad} f \cdot \mathrm{~d} \vec{s} \\
& =\int_{\partial N} f=f(c(1))-f(c(0))
\end{aligned}
$$

(ii) Let N be 2-dimensional submanifold of $M=\mathbb{R}^{3}$ with boundary and $\omega=\omega_{j} \mathrm{~d} q^{j}$ a compactly supported 1 -form. Then, on the one hand,

$$
\int_{\partial N} \omega=\int_{\partial N} \omega_{j} \mathrm{~d} q^{j}=\int_{\partial N} \vec{\omega} \cdot \mathrm{~d} \vec{s},
$$

and on the other hand

$$
\begin{aligned}
\int_{N} \mathrm{~d} \omega & =\int_{N} *(* \mathrm{~d} \omega)=\int_{N}(\operatorname{curl} \vec{\omega})_{j} * \mathrm{~d} q^{j} \\
& =\int_{N} \operatorname{curl} \vec{\omega} \cdot\left(\begin{array}{c}
\mathrm{d} q^{2} \wedge \mathrm{~d} q^{3} \\
\mathrm{~d} q^{3} \wedge \mathrm{~d} q^{1} \\
\mathrm{~d} q^{1} \wedge \mathrm{~d} q^{2}
\end{array}\right)=: \int_{N} \operatorname{curl} \vec{\omega} \cdot \mathrm{~d} \vec{F}
\end{aligned}
$$

We thus obtain the classical Stokes theorem in \mathbb{R}^{3} :

$$
\int_{\partial N} \vec{\omega} \cdot \mathrm{~d} \vec{s}=\int_{N} \operatorname{curl} \vec{\omega} \cdot \mathrm{~d} \vec{F} .
$$

6 Integration on manifolds

(iii) Let N be a n-dimensional submanifold of $M=\mathbb{R}^{n}$ with boundary and $\omega=*\left(\omega_{j} \mathrm{~d} q^{j}\right)$ a compactly supported $(n-1)$-form. Then

$$
\int_{\partial N} \omega=\int_{\partial N} \omega_{j} * \mathrm{~d} q^{j}=\int_{\partial N} \vec{\omega} \cdot \mathrm{~d} \vec{F}
$$

and

$$
\int_{N} \mathrm{~d} \omega=\int_{N} * * \mathrm{~d} * \omega_{j} \mathrm{~d} q^{j}=\int_{N} * \operatorname{div} \vec{\omega}=\int_{N} \operatorname{div} \vec{\omega} \varepsilon=\int_{N} \operatorname{div} \vec{\omega} \mathrm{~d} V
$$

We thus obtain the Gauß theorem in \mathbb{R}^{n} :

$$
\int_{\partial N} \vec{\omega} \cdot \mathrm{~d} \vec{F}=\int_{N} \operatorname{div} \vec{\omega} \mathrm{~d} V
$$

We now introduce the notion of smoothly deforming submanifolds (or smooth images of manifolds) into each other.

6.18 Definition. Diffeotopy (=smooth homotopy)

Let $N_{0}=\psi_{0}(N)$ and $N_{1}=\psi_{1}(N)$ be smooth images of a p-dimensional manifold N in the n-dimensional manifold M, i.e. $\psi_{0}: N \rightarrow M$ and $\psi_{1}: N \rightarrow M$ are smooth. The maps ψ_{0} and ψ_{1} are called diffeotopic (or smoothly homotopic), if there exists a smooth function $F:[0,1] \times N \rightarrow M$ such that

$$
\psi_{0}=F \circ \iota_{0}: N \rightarrow N_{0} \quad \text { and } \quad \psi_{1}=F \circ \iota_{1}: N \rightarrow N_{1}
$$

Here ι_{0} and ι_{1} denotes the inclusion of N in $\{0\} \times N$ respectively in $\{1\} \times N$, i.e. $\iota_{\ell}: N \rightarrow[0,1] \times N$, $x \mapsto \iota_{\ell}(x)=(\ell, x)$. The map F is then called a diffeotopy. If N has a boundary, one requires in addition that $\left.\psi_{0}\right|_{\partial N}=\left.\psi_{1}\right|_{\partial N}=\left.F(t, \cdot)\right|_{\partial N}$ for all $t \in(0,1)$, and refers to a diffeotopy with fixed boundary.

An further corollary of Stokes theorem is now the following statement: the integral of a closed differential form over the smooth image of a p-dimensional manifold doesn't change, if one smoothly deforms the latter while keeping the image of its boundary fixed.

6.19 Theorem. Invariance of the integral of closed forms under diffeotopies

Let M be an n-dimensional smooth manifold, N a p-dimensional smooth orientable manifold, and $\psi_{0}: N \rightarrow M$ and $\psi_{1}: N \rightarrow M$ smooth and diffeotopic. For every closed $\omega \in \Lambda_{p}(M)$ with compact support it holds that

$$
\int_{N_{0}} \omega=\int_{N_{1}} \omega
$$

Proof. Homework assignment.
We end this section with a few simple observations that will be useful in applications.

6.20 Proposition. Invariance of the integral under diffeomorphisms

Let $\Phi: M_{1} \rightarrow M_{2}$ be a diffeomorphism and let $\omega \in \Lambda_{n}\left(M_{2}\right)$ be compactly supported. Then

$$
\int_{M_{1}} \Phi^{*} \omega=\int_{M_{2}} \omega
$$

Proof. See the proof of proposition 6.5.
6.21 Corollary. Let $\Phi: M \rightarrow M$ be a diffeomorphism and $\Omega \in \Lambda_{n}(M)$ an invariant volume form, i.e. $\Phi^{*} \Omega=\Omega$. Then it holds for all functions $f \in C_{0}^{\infty}(M)$ that

$$
\int_{M} f \Omega=\int_{M}(f \circ \Phi) \Omega
$$

Proof. This follows from proposition 6.20 and

$$
\Phi^{*}(f \Omega)=(f \circ \Phi) \Phi^{*} \Omega=(f \circ \Phi) \Omega .
$$

6.22 Remark. The integral of measurable resp. integrable functions

The integral defined in definition 6.9 can be extended to measurable functions in a straightforward way: Let $\Omega \in \Lambda_{n}(M)$ be a positive volume form and let $f: M \rightarrow[0, \infty)$ be measurable. Then one defines

$$
\begin{aligned}
\int_{M} f \Omega & =\sum_{i} \int_{\varphi_{i}\left(V_{i}\right)} \varphi_{i *}\left(\chi_{i} f \Omega\right)=\sum_{i} \int_{\varphi_{i}\left(V_{i}\right)}\left(\chi_{i} f \circ \varphi_{i}^{-1}\right) \varphi_{i *} \Omega \\
& =\sum_{i} \int_{\varphi_{i}\left(V_{i}\right)}\left(\chi_{i} f \circ \varphi_{i}^{-1}\right)(q) \Omega(q) \mathrm{d}^{n} q
\end{aligned}
$$

where the last integral is again a Lebesgue integral on \mathbb{R}^{n}. One calls $f: M \rightarrow \mathbb{R}$ integrable if $\int_{M}|f| \Omega<\infty$ and defines for integrable $f \in L^{1}(M, \Omega)$ its integral as $\int_{M} f \Omega:=\int_{M} f^{+} \Omega-\int_{M} f^{-} \Omega$.

German nomenclature

```
compact support = kompakter Träger
orientation = Orientierung
volume form = Volumenform
```


7 Integral curves and flows

Similar to the situation on \mathbb{R}^{n} also vector fields on manifolds define ordinary differential equations (ODEs): Let $I \subset \mathbb{R}$ be an open interval and $u: I \rightarrow M$ a smooth curve in a manifold M. At each point $u(t) \in M$ on the curve the tangent vector defined by the curve is

$$
\dot{u}(t)=[u(\cdot+t)]_{u(t)}=(D u \circ e)(t) \in T_{u(t)} M
$$

where $e: I \rightarrow T I, t \mapsto(t, 1)$ denotes the canonical unit vector field on I.

7.1 Definition. Integral curve

A smooth curve $u \in C^{\infty}(I, M)$ with $I \subset \mathbb{R}$ an open interval is called integral curve for the vector field $X \in \mathcal{T}_{0}^{1}(M)$ if

$$
\begin{equation*}
\dot{u}:=D u \circ e=X \circ u \tag{7.1}
\end{equation*}
$$

i.e. if the following diagram is commutative:

I	\xrightarrow{u}	M
$e \downarrow$		$\downarrow X$
$T I$	$\xrightarrow{D u}$	$T M$

7.2 Remark. Using a coordinate chart φ with

$$
\varphi \circ u: t \mapsto\left(\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right) \quad \text { and } \quad \varphi_{*} X:\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right) \mapsto\left(\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right),\left(\begin{array}{c}
v_{1}(q) \\
\vdots \\
v_{n}(q)
\end{array}\right)\right)
$$

we can apply $D \varphi$ on both sides of 7.1 to obtain the familiar form

$$
\dot{u}_{j}(t)=v_{j}\left(u_{1}(t), \ldots, u_{n}(t)\right) \quad, j=1, \ldots, n
$$

of a first order ODE on \mathbb{R}^{n}. Hence we can at least locally transfer the results for ODEs in \mathbb{R}^{n} also to ODEs on manifolds.
7.3 Reminder. Let

$$
X: \mathbb{R}^{n} \supset U \rightarrow \mathbb{R}^{n}
$$

be a vector field on an open subset U of \mathbb{R}^{n} and

$$
\begin{equation*}
\dot{u}(t)=X(u(t)) \tag{7.2}
\end{equation*}
$$

the corresponding first order ODE. Then we have the following implications:
(a) If X is continuous, then to each $x_{0} \in U$ there exists an $\varepsilon>0$ and a differentiable curve $u_{x_{0}}:(-\varepsilon, \varepsilon) \rightarrow U$ with $u_{x_{0}}(0)=x_{0}$ that solves (7.2) (Peano existence theorem).
(b) If X is locally Lipschitz continuous, then the solution $u_{x_{0}}$ from (a) is unique (Picard-Lindelöf theorem).
(c) If $X \in C^{p}\left(U, \mathbb{R}^{n}\right)$, then the solution $\operatorname{map} \Phi:\left(t, x_{0}\right) \mapsto \Phi\left(t, x_{0}\right):=u_{x_{0}}(t)$ is p-times continuously differentiable as a function of the initial data, i.e. $\Phi(t, \cdot) \in C^{p}(U)$ for all t in the existence interval.

7.4 Theorem. Existence, uniqueness and differentiability of local solutions

Let $X \in \mathcal{T}_{0}^{1}(M)$ be a smooth vector field on M. For every $x \in \stackrel{\circ}{M}:=M \backslash \partial M$ there exist $\varepsilon>0$, an open neighbourhood U of x, and a unique map

$$
\begin{aligned}
\Phi:(-\varepsilon, \varepsilon) \times U & \rightarrow M \\
\left(t, x_{0}\right) & \mapsto \Phi\left(t, x_{0}\right),
\end{aligned}
$$

such that
(a) for every $x_{0} \in U$ the curve

$$
\Phi_{x_{0}}:(-\varepsilon, \varepsilon) \rightarrow M, \quad t \mapsto \Phi_{x_{0}}(t):=\Phi\left(t, x_{0}\right)
$$

is an integral curve of X through x_{0}, i.e. $\dot{\Phi}_{x_{0}}=X \circ \Phi_{x_{0}}$ and $\Phi_{x_{0}}(0)=x_{0}$,
and
(b) for every $t \in(-\varepsilon, \varepsilon)$ the map

$$
\Phi_{t}: U \rightarrow M, \quad x_{0} \mapsto \Phi_{t}\left(x_{0}\right):=\Phi\left(t, x_{0}\right)
$$

is a diffeomorphism from U onto an open subset of M.

Proof. The statements follow immediately from the corresponding results on \mathbb{R}^{n} when we restrict to a chart.

Also the existence of unique maximal solutions that necessarily leave every compact set can be shown exactly as in the case of \mathbb{R}^{n}.

7.5 Theorem. Existence and behaviour of maximal solutions

Let $X \in \mathcal{T}_{0}^{1}(M)$.
(a) For every initial point $x_{0} \in \stackrel{\circ}{M}$ there exists a unique maximal solution of $\dot{u}_{x_{0}}=X \circ u_{x_{0}}$. More precisely, there exist an open interval $I_{x_{0}} \subset \mathbb{R}$ and a unique $u_{x_{0}}: I_{x_{0}} \rightarrow M$ with $\dot{u}_{x_{0}}=X \circ u_{x_{0}}$ and $u_{x_{0}}(0)=x_{0}$. The solution is maximal and unique in the following sense: for every other solution $\tilde{u}: \tilde{I} \rightarrow M$ with $\dot{\tilde{u}}=X \circ \tilde{u}$ and $\tilde{u}(0)=x_{0}$ it holds that $\tilde{I} \subset I_{x_{0}}$ and $\left.u_{x_{0}}\right|_{\tilde{I}}=\tilde{u}$.
Moreover, the set $D:=\left\{\left(t, x_{0}\right) \in \mathbb{R} \times \stackrel{\circ}{M} \mid t \in I_{x_{0}}\right\}$ is open and

$$
\Phi^{X}: D \rightarrow M, \quad\left(t, x_{0}\right) \mapsto \Phi^{X}\left(t, x_{0}\right):=u_{x_{0}}(t)
$$

is called the maximal flow. For any $t \in \mathbb{R}$ the map

$$
\Phi_{t}^{X}:\left\{x_{0} \in \stackrel{\circ}{M} \mid\left(t, x_{0}\right) \in D\right\}=: D_{t} \rightarrow M, \quad x_{0} \mapsto \Phi^{X}\left(t, x_{0}\right)
$$

is a diffeomorphism onto its range.
(b) Let $x_{0} \in \stackrel{\circ}{M}$ and $I_{x_{0}}=:\left(t^{-}\left(x_{0}\right), t^{+}\left(x_{0}\right)\right)$ be the existence interval of the maximal solution $u_{x_{0}}: I_{x_{0}} \rightarrow M$ of $\dot{u}=X \circ u$ starting at x_{0}. Let $K \subset \dot{M}$ be compact. If $t^{+}\left(x_{0}\right)<\infty$, then there exists $0<\tau<t^{+}\left(x_{0}\right)$ such that

$$
u_{x_{0}}(t) \notin K \quad \text { for all } \quad t \in\left(\tau, t^{+}\left(x_{0}\right)\right)
$$

Put differently, a maximal integral curve can not "end" inside a compact set that doesn't contain boundary points. Thus, if a solution does not exist for all times, then it must either run to infinity in finite time or hit the boundary of M.

7.6 Definition. Global flow

Let $\Phi: \mathbb{R} \times M \rightarrow M$ be a smooth map such that for every $t \in \mathbb{R}$ the map

$$
\Phi_{t}: M \rightarrow M, \quad x \mapsto \Phi(t, x)
$$

is a diffeomorphism with $\Phi_{0}=\mathrm{id}_{M}$ and such that

$$
\begin{equation*}
\Phi_{t_{1}} \circ \Phi_{t_{2}}=\Phi_{t_{1}+t_{2}} \quad \text { for all } \quad t_{1}, t_{2} \in \mathbb{R} \tag{7.3}
\end{equation*}
$$

Then Φ is called a global flow.

7.7 Definition. Complete vector fields and global flows

Let $X \in \mathcal{T}_{0}^{1}(M)$ and $\partial M=\emptyset$. If $I_{x_{0}}=\mathbb{R}$ holds for all $x_{0} \in M$ then $D=\mathbb{R} \times M$ and, according to theorem 7.5 (a), $\Phi_{t}^{X}: M \rightarrow M$ is a diffeomorphism for all $t \in \mathbb{R}$, and, by the uniqueness of integral curves,

$$
\begin{equation*}
\Phi_{t_{1}}^{X} \circ \Phi_{t_{2}}^{X}=\Phi_{t_{1}+t_{2}}^{X} \quad \text { for all } \quad t_{1}, t_{2} \in \mathbb{R} \tag{7.4}
\end{equation*}
$$

Hence Φ^{X} is a global flow and X is called complete.
For simplicity we discuss only global flows in the following. But all results hold also for local flows where one has to restrict the domains appropriately, as indicated in theorem 7.5 .

7.8 Definition. Closed manifold

A compact manifold without boundary is called a closed manifold.

7.9 Corollary. Vector fields on closed manifolds are complete

Let M be closed. Then every vector field $X \in \mathcal{T}_{0}^{1}(M)$ on M is complete and the corresponding flow Φ^{X} is a global flow.

Proof. This is a direct consequence of theorem 7.5 (b).

7.10 Proposition. A global flow is always the flow of a complete vector field X

Let Φ be a global flow on M. There exists a unique vector field $X \in \mathcal{T}_{0}^{1}(M)$ such that $\Phi=\Phi^{X}$.
Proof. For $x \in M$ define the curve $\Phi_{x}: \mathbb{R} \rightarrow M, t \mapsto \Phi(t, x)$, and the vector field

$$
X: M \rightarrow T M, \quad x \mapsto X(x):=\left(D \Phi_{x} \circ e\right)(0) .
$$

Since $\Phi_{x}(0)=x$, we have $\left(D \Phi_{x} \circ e\right)(0)=X(x)=\left(X \circ \Phi_{x}\right)(0)$. To conclude that $\Phi=\Phi^{X}$ it remains to check that $\left(D \Phi_{x} \circ e\right)(t)=\left(X \circ \Phi_{x}\right)(t)$ for all $t \in \mathbb{R}$. However, by the flow property (7.3) we have for $T_{t}: \mathbb{R} \rightarrow \mathbb{R}, s \mapsto s+t$ and $y:=\Phi_{t}(x)$ that

$$
\left(\Phi_{x} \circ T_{t}\right)(s)=\Phi(s+t, x)=\Phi_{s+t}(x) \stackrel{\sqrt{7.3}}{=}\left(\Phi_{s} \circ \Phi_{t}\right)(x)=\Phi_{s}\left(\Phi_{t}(x)\right)=\Phi_{s}(y)=\Phi_{y}(s),
$$

i.e. $\Phi_{x} \circ T_{t}=\Phi_{y}$. Using that T_{t} is the flow of e, we find

$$
\begin{aligned}
\left(X \circ \Phi_{x}\right)(t) & =\left(X \circ \Phi_{x} \circ T_{t}\right)(0)=\left(X \circ \Phi_{y}\right)(0)=\left(D \Phi_{y} \circ e\right)(0) \\
& =\left(D\left(\Phi_{x} \circ T_{t}\right) \circ e\right)(0)=\left(D \Phi_{x} \circ D T_{t} \circ e\right)(0) \\
& =\left(D \Phi_{x} \circ e \circ T_{t}\right)(0)=\left(D \Phi_{x} \circ e\right)(t)
\end{aligned}
$$

7.11 Definition. Killing vector fields and Hamiltonian vector fields

Let $g \in \mathcal{T}_{2}^{0}(M)$ be either a (pseudo-)metric or a symplectic form and $X \in \mathcal{T}_{0}^{1}$ a complete vector field. If the flow maps Φ_{t}^{X} are isometries resp. canonical transformations, then X is called a Killing vector field (named after Wilhelm Killing, a German mathematician) resp. a Hamiltonian vector field.

7.12 Example. Linear drift on \mathbb{R}^{n}

Let $M=\mathbb{R}^{n}, L:\left(q_{1}, \ldots, q_{n}\right) \mapsto\left(\left(q_{1}, \ldots, q_{n}\right),(1,0,0, \ldots, 0)\right)$. Then Φ^{L} is a global flow, called the linear drift, and is explicitly given by

$$
\Phi^{L}(t, q)=\left(q_{1}+t, q_{2}, \ldots, q_{n}\right)
$$

The linear drift is obviously a Killing field for the euclidean metric on \mathbb{R}^{n}.

7.13 Proposition. Integral curves and diffeomorphisms

Let $\Psi: M_{1} \rightarrow M_{2}$ be a diffeomorphism, $X \in \mathcal{T}_{0}^{1}\left(M_{1}\right)$ a vector field and $u: I \rightarrow M_{1}$ an integral curve of X. Then $\Psi \circ u: I \rightarrow M_{2}$ is an integral curve of $\Psi_{*} X$.
If X is complete, we thus have

$$
\Psi \circ \Phi_{t}^{X}=\Phi_{t}^{\Psi_{*} X} \circ \Psi
$$

Proof.

$$
D(\Psi \circ u) \circ e=D \Psi \circ D u \circ e=D \Psi \circ X \circ u=D \Psi \circ X \circ \Psi^{-1} \circ \Psi \circ u=\Psi_{*} X \circ(\Psi \circ u) .
$$

The following theorem states that in appropriate coordinates every flow Φ^{X} has locally the form of a linear flow with the exception of the fixed points where $X=0$. Note that for a point x with $X(x)=0$ the unique integral curve through x is $u(t) \equiv x$ for all $t \in \mathbb{R}$.

7.14 Theorem. Normal form of a flow away from the fixed points

Let $X \in \mathcal{T}_{0}^{1}(M)$ and $x \in M$ with $X(x) \neq(x, 0)$. Then there exists a chart (V, φ) with $x \in V$ such that

$$
\varphi_{*} X=L
$$

and thus locally

$$
\Phi_{t}^{X}=\varphi^{-1} \circ \Phi_{t}^{L} \circ \varphi
$$

Proof. Since $X(x) \neq(x, 0)$ there exists a chart $\left(V_{1}, \psi\right)$ with $\psi(x)=0 \in \mathbb{R}^{n}$ and $\psi_{*} X(0)=$ $(1,0, \ldots, 0)$. Since $\psi_{*} X \in \mathcal{T}_{0}^{1}\left(\psi\left(V_{1}\right)\right)$ is continuous, there exists an open relatively compact neighbourhood $U_{2} \subset \psi\left(V_{1}\right)$ of 0 on which the first component of $\psi_{*} X$ remains larger than $\frac{1}{2}$, i.e. $\left(\psi_{*} X\right)_{1}(q)>\frac{1}{2}$ for all $q \in U_{2}$.

Strategy: We first interpolate the vector fields $\psi_{*} X$ on $U \subset U_{2}$ and L on U_{2}^{c} in order to obtain a smooth vector field \tilde{L} on all of \mathbb{R}^{n}. Next we show that L and \tilde{L} are diffeomorphic, i.e. that there exists a diffeomorphism $\Omega: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\Omega_{*} \tilde{L}=L$. Then $\varphi=\Omega \circ \psi$ is the chart we are
looking for since $\varphi_{*} X=\Omega_{*} \psi_{*} X=\Omega_{*} \tilde{L}=L$ on $V=\psi^{-1}(U)$.
So let $U \subset U_{2}$ be open with $0 \in U$ and pick a function $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ with

$$
f(q)=\left\{\begin{array}{lll}
1 & \text { if } & q \in U \\
0 & \text { if } & q \in U_{2}^{c}
\end{array}\right.
$$

and $0 \leq f(q) \leq 1$. Then the interpolating vector field is defined as

$$
\tilde{L}=f \psi_{*} X+(1-f) L \in \mathcal{T}_{0}^{1}\left(\mathbb{R}^{n}\right) .
$$

Clearly the flow $\Phi_{t}^{\tilde{L}}$ of \tilde{L} is global as \mathbb{R}^{n} has no boundary and no integral curve can escape to infinity in finite time. We now show that

$$
\Omega=\lim _{t \rightarrow \infty} \Phi_{-t}^{L} \circ \Phi_{t}^{\tilde{L}}
$$

exists and defines a diffeomorphism such that

$$
\Omega_{*} \tilde{L}=L .
$$

Since $\left(\Phi_{t}^{\tilde{L}}(q)\right)_{1} \geq q_{1}+\frac{1}{2} t$, every integral curve leaves U_{2} after a finite time. Hence on compact sets $K \subset \mathbb{R}^{n}$ the limit

$$
\left.\lim _{t \rightarrow \infty} \Phi_{-t}^{L} \circ \Phi_{t}^{\tilde{L}}\right|_{K}=\Phi_{-\tau}^{L} \circ \Phi_{\tau}^{\tilde{L}}
$$

is reached already after a finite time $\tau_{0}(K)$. Thus, Ω is well defined and a diffeomorphism. Moreover,

$$
\Omega \circ \Phi_{t}^{\tilde{L}}=\lim _{s \rightarrow \infty} \Phi_{-s}^{L} \circ \Phi_{s}^{\tilde{L}} \circ \Phi_{t}^{\tilde{L}}=\lim _{s \rightarrow \infty} \Phi_{t}^{L} \circ \Phi_{-s-t}^{L} \circ \Phi_{s+t}^{\tilde{L}}=\Phi_{t}^{L} \circ \Omega
$$

and the flows $\Phi^{\tilde{L}}$ and Φ^{L} are diffeomorphic. In particular, we also have $\Phi_{x}^{\tilde{L}}=\Omega^{-1} \circ \Phi_{\Omega(x)}^{L}$. Taking derivatives we find that for all $x \in \mathbb{R}^{n}$

$$
\tilde{L} \circ \Phi_{x}^{\tilde{L}}=D \Phi_{x}^{\tilde{L}} \circ e=D \Omega^{-1} \circ D \Phi_{\Omega(x)}^{L} \circ e=D \Omega^{-1} \circ L \circ \Phi_{\Omega(x)}^{L} .
$$

At $t=0$ this gives $\tilde{L}=D \Omega^{-1} \circ L \circ \Omega=\Omega^{*} L$.

7.15 Remark. Linearisation of a vector field at a fixed point

Away from the fixed points the flow of a vector field is diffeomorphic to the linear drift. The local behaviour near a fixed point can be analysed by looking at the linearisation of the vector field at such a fixed point.
Let $X \in \mathcal{T}_{0}^{1}(M)$ and $x_{0} \in M$ with $X\left(x_{0}\right)=\left(x_{0}, 0\right)$. In a chart φ with $\varphi\left(x_{0}\right)=0$ it then holds that

$$
X_{\varphi}(q)=\underbrace{X_{\varphi}(0)}_{=0}+\left.D X_{\varphi}\right|_{0} q+\mathcal{O}\left(\|q\|^{2}\right)=\left.D X_{\varphi}\right|_{0} q+\mathcal{O}\left(\|q\|^{2}\right),
$$

where we abbreviated $X_{\varphi}(q):=\left(I \circ \varphi_{*} X\right)(q)$. Close to $q=0$ we can thus approximate $X_{\varphi}(q)$ by its linearisation $\left.D X_{\varphi}\right|_{0} q$. Qualitatively, the behaviour close to the fixed point is determined by the eigenvalues of $\left.D X_{\varphi}\right|_{0}$ and their (geometric) multiplicities. These are independent of the chosen chart since for different charts φ and ψ the differentials $\left.D X_{\varphi}\right|_{0}$ and $\left.D X_{\psi}\right|_{0}$ are similar matrices.
We illustrate the different possible types of fixed points only for $n=2$:
(a) $\left.D X\right|_{0}$ diagonalisable with real eigenvalues and
(i) $\lambda_{1}, \lambda_{2}>0$:
(ii) $\lambda_{1}, \lambda_{2}<0$:
(iii) $\lambda_{1}>0, \lambda_{2}<0$:

(b) $\left.D X\right|_{0}$ has two complex conjugate eigenvalues $\lambda_{1 / 2}=a \pm$ ib, e.g. $\left.D X\right|_{0}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$:
(i) $b>0, a=0$:
(ii) $b>0, a>0$:
(iii) $b>0, a<0$:

(c) $\left.D X\right|_{0}$ has one real eigenvalue of geometric multiplicity 1, e.g. $\left.D X\right|_{0}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$:

German nomenclature

complete vector field $=$ vollständiges Vektorfeld fixed point $=$ Fixpunkt solution $=$ Lösung
integral curve $=$ Integralkurve flow $=$ Fluss

8 The Lie derivative

The exterior derivative of differential forms is defined on any smooth manifold without involving further structure. If one tries to differentiate other tensor fields, e.g. vector fields, in the conventional way by taking the limit of a difference quotient, the following question comes up: how can one compare the values $\tau(x)$ and $\tau(y)$ of a tensor field $\tau \in \mathcal{T}_{s}^{r}(M)$ at nearby points? In contrast to the familiar situation on $\mathbb{R}^{n}, \tau(x)$ and $\tau(y)$ are elements of different vector spaces, namely of $T_{x_{s}}^{r} M$ and $T_{y_{s}}^{r} M$, and thus an expression of the form

$$
\left.D_{v} \tau\right|_{x}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tau \circ c_{v}\right)(t)\right|_{t=0}=\lim _{h \rightarrow 0} \frac{\tau\left(c_{v}(h)\right) \stackrel{?}{-} \tau(x)}{h}, \quad v=\left[c_{v}\right]_{x}
$$

makes no sense. One could, of course, use charts and define, e.g., for a vector field $X \in \mathcal{T}_{0}^{1}(M)$

$$
D X=D\left(X^{i} \partial_{q_{i}}\right):=\frac{\partial X^{i}}{\partial q_{j}} \mathrm{~d} q^{j} \otimes \partial_{q_{i}}
$$

However, this definition is not independent of the chosen chart and does not define a global tensor field in $\mathcal{T}_{1}^{1}(M)$.
In order to differentiate tensor fields in the usual sense we need further structure that allows for a coordinate independent identification of neighbouring tangent spaces.

- A connection ∇ (on the tangent bundle) allows one to define the derivative $\left.\nabla_{v} X\right|_{x}$ of a vector field X in the direction $v \in T_{x} M$ at the point $x \in M$. Every metric on M induces a connection, the so called Levi-Civita connection. Hence, on Riemannian manifolds we have a canonical way of differentiating vector- and other tensor fields. We will study connections in section 10 .
- Alternatively, a vector field X yields itself an identification of neighbouring tangent spaces by using the corresponding flow Φ_{t}^{X}. The pull-back $\Phi_{t}^{X *}$ under the flow map is an isomorphism between $T_{y_{s}}^{r} M$ at $y=\Phi_{t}^{X}(x)$ and $T_{x}{ }_{s}^{r} M$ and the limit of the corresponding difference quotient defines the Lie derivative. Note, however, that we now take the derivative in the direction of a vector field, not in the direction of a single tangent vector.

8.1 Definition. The Lie derivative

For $X \in \mathcal{T}_{0}^{1}(M)$ the Lie derivative of a tensor field $\tau \in \mathcal{T}_{s}^{r}(M)$ is defined by

$$
L_{X} \tau:=\lim _{t \rightarrow 0} \frac{\Phi_{t}^{X *} \tau-\tau}{t}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{t}^{X *} \tau\right|_{t=0}
$$

Note that the pull back $\Phi_{t}^{X *}$ acts fibre wise as a linear map $\left.\Phi_{t}^{X *}\right|_{x}$ on the vector space T_{x}^{r} and that thus $\frac{\mathrm{d}}{\mathrm{d} t}\left(\Phi_{t}^{X *} \tau\right)(x)=\left(\left.\frac{\mathrm{d}}{\mathrm{d} t} \Phi_{t}^{X *}\right|_{x}\right) \tau(x)$.
8.2 Remark. For $r=s=0$ we recover

$$
L_{X} f=\left.\frac{\mathrm{d}}{\mathrm{~d} t} f \circ \Phi_{t}^{X}\right|_{t=0}=\mathrm{d} f(X)=(\mathrm{d} f \mid X),
$$

i.e. the Lie derivative of functions from definition 2.29. In this specific case $\left(L_{X} f\right)(y)$ depends only on the value $X(y)$ of X at the point y. For $r+s>0$, in contrast, the value $\left(L_{X} \tau\right)(y)$ of $L_{X} \tau$ at y depends on the behaviour of X on a whole neighbourhood of $y \in M$.

8.3 Lemma. L_{X} commutes with the flow maps Φ_{t}^{X}

Let $X \in \mathcal{T}_{0}^{1}(M)$ and $\tau \in \mathcal{T}_{s}^{r}(M)$. Then

$$
L_{X} \Phi_{t}^{X *} \tau(x)=\Phi_{t}^{X *} L_{X} \tau(x)
$$

for all $t \in I_{x}$. If X is complete, it thus holds for all $t \in \mathbb{R}$ that

$$
L_{X} \Phi_{t}^{X *} \tau=\Phi_{t}^{X *} L_{X} \tau .
$$

Proof. By the flow property $\Phi_{s}^{X} \circ \Phi_{t}^{X}=\Phi_{s+t}^{X}=\Phi_{t}^{X} \circ \Phi_{s}^{X}$ we have that $\Phi_{s}^{X *} \Phi_{t}^{X *}=\Phi_{t+s}^{X *}=$ $\Phi_{t}^{X *} \Phi_{s}^{X *}$, which restricted to the fibre $T_{x_{s}}^{r}$ are just compositions of linear maps $\left.\Phi_{s}^{X *}\right|_{x} \Phi_{t}^{X *}{ }_{x}=$ $\left.\Phi_{t+s}^{X *}\right|_{x}=\left.\left.\Phi_{t}^{X}{ }^{*}\right|_{x} \Phi_{s}^{X *}\right|_{x}$. Hence,

$$
\begin{aligned}
\left.L_{X} \Phi_{t}^{X *}\right|_{x} \tau(x) & =\left.\left.\left(\left.\frac{\mathrm{d}}{\mathrm{~d} s} \Phi_{s}^{X *}\right|_{x}\right)\right|_{s=0} \Phi_{t}^{X *}\right|_{x} \tau(x)=\left.\left(\frac{\mathrm{d}}{\mathrm{~d} s} \Phi_{s+t}^{X *}\right)\right|_{s=0} \tau(x) \\
& =\left.\left.\Phi_{t}^{X *}\right|_{x}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} s} \Phi_{s}^{X *}\right|_{x}\right)\right|_{s=0} \tau(x)=\left.\Phi_{t}^{X *}\right|_{x} L_{X} \tau(x)
\end{aligned}
$$

8.4 Proposition. Properties of the Lie derivative

Let $t_{1}, t_{2} \in \mathcal{T}_{s}^{r}(M), t_{3} \in \mathcal{T}_{s^{\prime}}^{r^{\prime}}(M), t_{4} \in \mathcal{T}_{r}^{s}(M)$, and $X \in \mathcal{T}_{0}^{1}(M)$. Then
(i) $L_{X}\left(t_{1}+t_{2}\right)=L_{X} t_{1}+L_{X} t_{2}$
(ii) $L_{X}\left(t_{1} \otimes t_{3}\right)=L_{X} t_{1} \otimes t_{3}+t_{1} \otimes L_{X} t_{3}$
(iii) $L_{X}\left(t_{1} \mid t_{4}\right)=\left(L_{X} t_{1} \mid t_{4}\right)+\left(t_{1} \mid L_{X} t_{4}\right)$

Proof. For $\Phi_{t}^{X *}$ it holds that
(i) $\Phi_{t}^{X *}\left(t_{1}+t_{2}\right)=\Phi_{t}^{X *} t_{1}+\Phi_{t}^{X *} t_{2}$
(ii) $\Phi_{t}^{X *}\left(t_{1} \otimes t_{3}\right)=\Phi_{t}^{X *} t_{1} \otimes \Phi_{t}^{X *} t_{3}$
(iii) $\Phi_{t}^{X *}\left(t_{1} \mid t_{4}\right)=\left(\Phi_{t}^{X *} t_{1} \mid \Phi_{t}^{X *} t_{4}\right)$.

Evaluating in each case the derivative with respect to t at $t=0$ yields the corresponding claim.
8.5 Remark. Let $g \in \mathcal{T}_{2}^{0}(M)$ be a metric or symplectic form and denote by $\langle\cdot \mid \cdot\rangle_{g}:=G(\cdot, \cdot)$ the bilinear form of definition 4.12, For isometries resp. canonical transformations Φ it holds by definition that
$\Phi^{*} g=g \quad$ and thus $\quad \Phi^{*}\left\langle t_{1} \mid t_{2}\right\rangle_{g}=\left\langle\Phi^{*} t_{1} \mid \Phi^{*} t_{2}\right\rangle_{g} \quad$ for tensor fields t_{1} and t_{2} of the same type.
Hence, for Killing resp. Hamiltonian vector fields X is holds that

$$
L_{X}\left\langle t_{1} \mid t_{2}\right\rangle_{g}=\left\langle L_{X} t_{1} \mid t_{2}\right\rangle_{g}+\left\langle t_{1} \mid L_{X} t_{2}\right\rangle_{g} .
$$

Warning: for general vector fields this is not true, since also g itself must be "differentiated"! \diamond

8.6 Proposition. Naturality of the Lie derivative

Let $\Psi: M_{1} \rightarrow M_{2}$ be a diffeomorphism, $X \in \mathcal{T}_{0}^{1}\left(M_{1}\right), \omega \in \Lambda_{k}\left(M_{1}\right)$, and $\tau \in \mathcal{T}_{s}^{r}\left(M_{1}\right)$. Then

$$
\Psi_{*} L_{X} \tau=L_{\Psi_{*} X} \Psi_{*} \tau
$$

and

$$
\mathrm{d} L_{X} \omega=L_{X} \mathrm{~d} \omega
$$

Proof. According to proposition 7.13 we have

$$
\Psi \circ \Phi_{t}^{X}=\Phi_{t}^{\Psi * X} \circ \Psi
$$

Hence

$$
\Psi_{*}\left(\Phi_{t}^{X}\right)_{*} \tau=\left(\Phi_{t}^{\Psi_{*} X}\right)_{*} \Psi_{*} \tau
$$

and thus, after taking a derivative,

$$
\Psi_{*} L_{X} \tau=L_{\Psi_{*} X} \Psi_{*} \tau
$$

Since the exterior derivative commutes with the pull-back $\left(\Phi_{t}^{X}\right)^{*}, \mathrm{~d}\left(\Phi_{t}^{X}\right)^{*} \omega=\left(\Phi_{t}^{X}\right)^{*} \mathrm{~d} \omega$, it also commutes with L_{X}.

8.7 Definition. The Lie bracket of vector fields

The Lie bracket of two vector fields $X, Y \in \mathcal{T}_{0}^{1}(M)$ is the vector field

$$
[X, Y]:=L_{X} Y .
$$

8.8 Proposition. Properties of the Lie bracket

For $t \in \mathcal{T}_{s}^{r}(M)$ and $X, Y, Z \in \mathcal{T}_{0}^{1}(M)$ we have

$$
\begin{equation*}
L_{[X, Y]} t=\left(L_{X} L_{Y}-L_{Y} L_{X}\right) t \tag{8.1}
\end{equation*}
$$

As a consequence, $[X, Y]=-[Y, X]$ and the Jacobi identity holds:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 .
$$

Proof. On $\mathcal{T}_{0}^{0}(M)$ we have with proposition 8.4 (iii), remark 8.2 , and proposition 8.6 that

$$
L_{[X, Y]} f \stackrel{8.2]}{=}(\mathrm{d} f \mid[X, Y])=\left(\mathrm{d} f \mid L_{X} Y\right) \stackrel{[8.48 .6}{=} L_{X}(\mathrm{~d} f \mid Y)-\left(\mathrm{d} L_{X} f \mid Y\right)=L_{X} L_{Y} f-L_{Y} L_{X} f .
$$

It follows that $[X, Y]=-[Y, X]$ since $L_{-Z}=-L_{Z}$ and since a vector field is uniquely specified by its action on \mathcal{T}_{0}^{0}. By the same reasoning the Jacobi identity follows from the following computation:

$$
\begin{aligned}
&([X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]])(f)= \\
&= L_{X} L_{[Y, Z]} f-L_{[Y, Z]} L_{X} f+L_{Y} L_{[Z, X]} f-L_{[Z, X]} L_{Y} f+L_{Z} L_{[X, Y]} f-L_{[X, Y]} L_{Z} f \\
&= L_{X} L_{Y} L_{Z} f-L_{X} L_{Z} L_{Y} f-L_{Y} L_{Z} L_{X} f+L_{Z} L_{Y} L_{X} f \\
&+L_{Y} L_{Z} L_{X} f-L_{Y} L_{X} L_{Z} f-L_{Z} L_{X} L_{Y} f+L_{X} L_{Z} L_{Y} f \\
& \quad+L_{Z} L_{X} L_{Y} f-L_{Z} L_{Y} L_{X} f-L_{X} L_{Y} L_{Z} f+L_{Y} L_{X} L_{Z} f=0
\end{aligned}
$$

With proposition 8.6 we get

$$
L_{[X, Y]} \mathrm{d} f=L_{X} L_{Y} \mathrm{~d} f-L_{Y} L_{X} \mathrm{~d} f
$$

and thus, with proposition 8.4 (i), the equality (8.1) also on $\mathcal{T}_{1}^{0}(M)$. With proposition 8.4 (ii) and (iii) 8.1) holds on all $\mathcal{T}_{s}^{r}(M)$.
8.9 Examples. Let X be given within a coordinate chart as $X=X^{i} \partial_{q_{i}}$.
(a) For $f \in \mathcal{T}_{0}^{0}$ we have $L_{X} f=(\mathrm{d} f \mid X)=\frac{\partial f}{\partial q_{i}} X^{i}=: f_{, i} X^{i}$.
(b) For $\omega=\omega_{i} \mathrm{~d} q^{i} \in \mathcal{T}_{1}^{0}$ we have

$$
\begin{aligned}
L_{X} \omega & =\left(L_{X} \omega_{i}\right) \mathrm{d} q^{i}+\omega_{i} \mathrm{~d}\left(L_{X} q^{i}\right)=\omega_{i, k} X^{k} \mathrm{~d} q^{i}+\omega_{i} \mathrm{~d}\left(X^{i}\right) \\
& =\omega_{i, k} X^{k} \mathrm{~d} q^{i}+\omega_{i} X_{, k}^{i} \mathrm{~d} q^{k}=\left(\omega_{i, k} X^{k}+\omega_{k} X_{, i}^{k}\right) \mathrm{d} q^{i} .
\end{aligned}
$$

(c) Since $L_{[X, Y]} f=X^{j} \partial_{j} Y^{i} \partial_{i} f-Y^{j} \partial_{j} X^{i} \partial_{i} f=\left(X^{j} Y_{, j}^{i}-Y^{j} X_{, j}^{i}\right) f_{, i}$, the commutator has the coordinate expression

$$
[X, Y]=\left(X^{j} Y_{, j}^{i}-Y^{j} X_{, j}^{i}\right) \partial_{q_{i}}=\left(\left(\mathrm{d} Y^{i} \mid X\right)-\left(\mathrm{d} X^{i} \mid Y\right)\right) \partial_{q_{i}} .
$$

8.10 Lemma. Let $X \in \mathcal{T}_{0}^{1}(M)$. Then

$$
\begin{equation*}
\left.\Phi_{t}^{X *}\right|_{x} X(x)=X(x) \tag{8.2}
\end{equation*}
$$

for all $t \in I_{x}$. Thus, for complete vector fields it holds that $\Phi_{t}^{X *} X=X$ for all $t \in \mathbb{R}$.
Proof. For $t=0$ the equality (8.2) holds, since $\left.\Phi_{0}^{X *}\right|_{x}=\mathrm{id}$. Moreover,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{t}^{X *}\right|_{x} X(x)=\left.\left(\left.\frac{\mathrm{d}}{\mathrm{~d} s} \Phi_{t+s}^{X *}\right|_{x}\right)\right|_{s=0} X(x)=\left.\left.\Phi_{t}^{X *}\right|_{x}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} s} \Phi_{s}^{X *}\right|_{x}\right)\right|_{s=0} X(x)=\left.\Phi_{t}^{X *}\right|_{x} L_{X} X=0
$$

as $L_{X} X=[X, X]=-[X, X]=-L_{X} X$ implies that $L_{X} X=0$. Hence the left hand side of 8.2) is independent of $t \in I_{x}$ and thus the equality holds for all times.

The next statement establishes a close connection between the Lie bracket of two vector fields X and Y and the corresponding flows: the flows commute (statement (iii)) if and only if each vector field is invariant under the flow of the other (statement (ii)) if and only if the Lie bracket $[X, Y]$ vanishes.

8.11 Proposition. Commuting flows and vector fields

Let $X, Y \in \mathcal{T}_{0}^{1}(M)$ be complete vector fields and Φ_{t}^{X} and Φ_{s}^{Y} the corresponding flows. Then the following assertions are equivalent:
(i) $[X, Y]=0$
(ii) $\Phi_{t}^{X *} Y=Y$ for all $t \in \mathbb{R}$ and $\Phi_{s}^{Y *} X=X$ for all $s \in \mathbb{R}$
(iii) $\Phi_{s}^{X} \circ \Phi_{t}^{Y}=\Phi_{t}^{Y} \circ \Phi_{s}^{X}$ for all $s, t \in \mathbb{R}$.

Proof. Homework assignment.
Finally, we discuss the relationship between the action of the Lie derivative on differential forms and the exterior derivative. To this end, we need the following definition.

8.12 Definition. Inner product of a vector field and a differential form

Let $X \in \mathcal{T}_{0}^{1}(M)$ and $\omega \in \Lambda_{p}(M)$, then the inner product $i_{X} \omega \in \Lambda_{p-1}(M)$ is defined by

$$
\left.i_{X} \omega\left(v_{1}, \ldots, v_{p-1}\right)\right|_{y}=\omega\left(X(y), v_{1}, \ldots, v_{p-1}\right) .
$$

Hence $\left(i_{X} \omega\right)_{i_{1} \cdots i_{p-1}}=X^{j} \omega_{j i_{1} \cdots i_{p-1}}$.

8.13 Theorem. The Lie derivative of differential forms: Cartan's formula

For $X \in \mathcal{T}_{0}^{1}(M)$ and $\omega \in \Lambda_{p}(M), 0 \leq p \leq n$, it holds that

$$
L_{X} \omega=i_{X} \mathrm{~d} \omega+\mathrm{d}\left(i_{X} \omega\right)
$$

On differential forms we thus have

$$
L_{X}=i_{X} \circ \mathrm{~d}+\mathrm{d} \circ i_{X}
$$

Proof. For $f \in \mathcal{T}_{0}^{0}(M)$ we have according to remark 8.2 that $L_{X} f=\mathrm{d} f(X)=i_{X} \mathrm{~d} f$. And $i_{X} f=0$ holds by definition. For $\omega=\omega_{j} \mathrm{~d} q^{j} \in \Lambda_{1}(M)$ proposition 8.4 (ii) yields that

$$
L_{X} \omega_{j} \mathrm{~d} q^{j}=\left(L_{X} \omega_{j}\right) \mathrm{d} q^{j}+\omega_{j} L_{X} \mathrm{~d} q^{j}=\mathrm{d} \omega_{j}(X) \mathrm{d} q^{j}+\omega_{j} \mathrm{~d} L_{X} q^{j}=\mathrm{d} \omega_{j}(X) \mathrm{d} q^{j}+\omega_{j} \mathrm{~d}\left(\mathrm{~d} q^{j}(X)\right)
$$

On the other hand

$$
\begin{aligned}
\left(i_{X} \mathrm{~d}+\mathrm{d} i_{X}\right) \omega_{j} \mathrm{~d} q^{j} & =\mathrm{d} \omega_{j}(X) \mathrm{d} q^{j}-\mathrm{d} q^{j}(X) \mathrm{d} \omega_{j}+\mathrm{d} q^{j}(X) \mathrm{d} \omega_{j}+\omega_{j} \mathrm{~d}\left(\mathrm{~d} q^{j}(X)\right) \\
& =\mathrm{d} \omega_{j}(X) \mathrm{d} q^{j}+\omega_{j} \mathrm{~d}\left(\mathrm{~d} q^{j}(X)\right)
\end{aligned}
$$

Thus, $L_{X}=i_{X} \circ \mathrm{~d}+\mathrm{d} \circ i_{X}$ on Λ_{0} and on Λ_{1}. Again with proposition 8.4 (ii) it holds for $\omega \in \Lambda_{1}$ and $\nu \in \Lambda_{k}$ that

$$
L_{X}(\omega \wedge \nu)=L_{X} \omega \wedge \nu+\omega \wedge L_{X} \nu
$$

and

$$
\begin{aligned}
\left(i_{X} \mathrm{~d}+\mathrm{d} i_{X}\right)(\omega \wedge \nu)= & i_{X}(\mathrm{~d} \omega \wedge \nu-\omega \wedge \mathrm{d} \nu)+\mathrm{d}\left(\omega(X) \nu-\omega \wedge i_{X} \nu\right) \\
= & i_{X} \mathrm{~d} \omega \wedge \nu+\mathrm{d} \omega \wedge i_{X} \nu-\omega(X) \mathrm{d} \nu+\omega \wedge i_{X} \mathrm{~d} \nu \\
& +\mathrm{d} \omega(X) \wedge \nu+\omega(X) \mathrm{d} \nu-\mathrm{d} \omega \wedge i_{X} \nu+\omega \wedge \mathrm{d} i_{X} \nu \\
= & \left(i_{X} \mathrm{~d}+\mathrm{d} i_{X}\right) \omega \wedge \nu+\omega \wedge\left(i_{X} \mathrm{~d}+\mathrm{d} i_{X}\right) \nu
\end{aligned}
$$

By induction it follows that L_{X} and $\mathrm{d} i_{X}+i_{X} \mathrm{~d}$ agree also on $\omega=\frac{1}{p!} \sum_{(i)} \omega_{(i)} \mathrm{d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{p}}$.
The following proposition computes the rate of change of the volume of a set $V(t):=\Phi_{t}^{X}(V)$ that is transported along the flow of a vector field X either in terms of the Lie derivative or in terms of an integral over the boundary of V. It can be seen as a variant of the divergence theorem of Gauß.

8.14 Proposition. A variant of Gauß' theorem

Let $\omega \in \Lambda_{n}(M), V \subset M$ an n-dimensional submanifold, and $X \in \mathcal{T}_{0}^{1}(V)$ with compact support. Then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Vol}^{\omega}\left(\Phi_{t}^{X}(V)\right)\right|_{t=0}:=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Phi_{t}^{X}(V)} \omega\right|_{t=0}=\int_{V} L_{X} \omega=\int_{\partial V} i_{X} \omega
$$

and, as a consequence, if $\partial M=\emptyset$ then

$$
\int_{M} L_{X} \omega=0
$$

Proof. The first equality is the infinitesimal version of proposition 6.20. The second equality follows from Cartan's formula and Stokes theorem.

German nomenclature

to commute $=$ kommutieren, vertauschen Lie bracket $=$ Lie-Klammer
Lie derivative $=$ Lie-Ableitung

9 Vector bundles

We have seen already plenty examples of vector bundles, namely all the tensor bundles over a smooth manifold M. A general vector bundle is a base space (a smooth manifold) M where at each point $x \in M$ a finite dimensional real or complex vector space is attached and all these fibres are glued together in a "smooth way".

9.1 Definition. Real vector bundles

A smooth vector bundle of rank k over an n-dimensional smooth manifold M is a smooth $(n+k)$-dimensional manifold E together with a smooth surjective map $\pi: E \rightarrow M$ with the following properties:
(a) For each $x \in M$ the set $E_{x}:=\pi^{-1}(\{x\}) \subset E$ has the structure of a real k-dimensional vector space, called the fibre over x.
(b) For each $x \in M$ there exists a neighbourhood $U \subset M$ of x and a diffeomorphism $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ such that $\pi_{1} \circ \Phi=\pi$ where $\pi_{1}: U \times \mathbb{R}^{k} \rightarrow U$ is the projection on the first factor. Moreover, $\left.\Phi\right|_{x}: E_{x} \rightarrow\{x\} \times \mathbb{R}^{k} \cong \mathbb{R}^{k}$ is a vector space isomorphism.
The manifold E is called the total space, M is called the base space, π its projection, and each map Φ as above is called a local trivialisation. If there exists a local trivialisation Φ defined on all of M, i.e. $\Phi: E \rightarrow M \times \mathbb{R}^{k}$, such a map is called a global trivialisation and the bundle E is called trivialisable.
9.2 Examples. (a) For any manifold M and k-dimensional real vector space V one can define the trivial bundle $E=M \times V$ with $\pi(x, v)=x$ and $\Phi=\left(\mathrm{id}_{M}, I\right)$ for some isomorphism $I: V \rightarrow \mathbb{R}^{k}$.
(b) The tangent bundle $T M$, the cotangent bundle $T^{*} M$, and actually all the tensor bundles $T_{s}^{r} M$ are vector bundles. For $T M$ the fibres are the tangent spaces $T_{x} M$ and local trivialisations are given by the bundle charts of definition 2.12 .

We now discuss several basic schemes that allow us to construct new vector bundles.
9.3 Lemma. (a) Given a vector bundle $\pi: E \rightarrow M$ and a submanifold $N \subset M$, then the restriction $\left.E\right|_{N}:=\pi_{M}^{-1}(N)$ with $\pi_{N}:\left.E\right|_{N} \rightarrow N, \pi_{N}=\left.\pi\right|_{N}$, is a vector bundle.
(b) Given two vector bundles $\pi_{1}: E_{1} \rightarrow M_{1}$ and $\pi_{2}: E_{2} \rightarrow M_{2}$ also the product

$$
\pi_{1} \times \pi_{2}: E_{1} \times E_{2} \rightarrow M_{1} \times M_{2}, \quad\left(p_{1}, p_{2}\right) \mapsto\left(\pi_{1}\left(p_{1}\right), \pi_{2}\left(p_{2}\right)\right)
$$

is a vector bundle with fibres $\pi_{1}^{-1}(\{x\}) \times \pi_{2}^{-1}(\{y\})$.
Proof. (a) is obvious and for (b) note that from local trivialisations $\Phi_{1}: \pi_{1}^{-1}\left(U_{1}\right) \rightarrow U_{1} \times \mathbb{R}^{k}$ for E_{1} and $\Phi_{2}: \pi_{2}^{-1}\left(U_{2}\right) \rightarrow U_{2} \times \mathbb{R}^{l}$ for E_{2} one obtains a local trivialisation $\Phi_{1} \times \Phi_{2}: \pi_{1}^{-1}\left(U_{1}\right) \times \pi_{2}^{-1}\left(U_{2}\right) \rightarrow$ $\left(U_{1} \times U_{2}\right) \times \mathbb{R}^{k+l}$ for $E_{1} \times E_{2}$.

9.4 Definition. The direct sum of vector bundles

Let E_{1} and E_{2} be vector bundles over M. Then the direct sum $\pi: E_{1} \oplus E_{2} \rightarrow M$ is the bundle with total space

$$
E_{1} \oplus E_{2}:=\left\{\left(p_{1}, p_{2}\right) \in E_{1} \times E_{2} \mid \pi_{1}\left(p_{1}\right)=\pi_{2}\left(p_{2}\right)\right\}
$$

and the projection $\pi: E_{1} \oplus E_{2} \rightarrow M, \pi\left(\left(p_{1}, p_{2}\right)\right):=\pi_{1}\left(p_{1}\right)=\pi_{2}\left(p_{2}\right)$. Hence the fibre $\pi^{-1}(\{x\})$ over $x \in M$ is the direct sum $E_{1, x} \oplus E_{2, x}$. To check that this really defines a vector bundle, note that $\pi: E_{1} \oplus E_{2} \rightarrow M$ is just the restriction of the product $E_{1} \times E_{2}$ to the submanifold $M=\{(x, x) \in M \times M\} \subset M \times M$ and apply lemma 9.3 .

9.5 Definition. Inner product on a vector bundle

An inner product on a vector bundle $\pi: E \rightarrow M$ is a smooth map

$$
\langle\cdot, \cdot\rangle: E \oplus E \rightarrow \mathbb{R}
$$

such that its restriction to each fibre $E_{x} \oplus E_{x}$ is an inner product, i.e. a positive definite symmetric bilinear form.
9.6 Example. A metric tensor $g \in \mathcal{T}_{2}^{0}(M)$ defines an inner product on the tangent bundle $T M . \diamond$

9.7 Definition. Vector subbundle

Let $\pi: E \rightarrow M$ be a vector bundle and $F \subset E$ a submanifold such that for each $x \in M$ the intersection $F_{x}:=F \cap E_{x}$ is a p-dimensional linear subspace of the vector space E_{x} and such that $\left.\pi\right|_{F}: F \rightarrow M$ defines a rank- p vector bundle. Then $\left.\pi\right|_{F}: F \rightarrow M$ is called a subbundle of $E . \diamond$

9.8 Example. The tangent bundle of a submanifold

Let $N \subset M$ be a p-dimensional submanifold of the n-dimensional manifold M. Then the restriction $\left.T M\right|_{N}$ is a rank- n vector bundle over N and the tangent bundle $T N$ of N can be naturally seen as a rank- p subbundle of $\left.T M\right|_{N}$ as follows. Let $\psi: N \rightarrow M$ denote the natural injection, then $\left.D \psi(T N) \subset T M\right|_{N}$ is a subbundle.

Often one needs to construct new vector bundles where the total space initially comes without the structure of a differentiable manifold. Then the following construction can be helpful.

9.9 Proposition. Construction of vector bundles

Let M be a smooth manifold, E a set, and $\pi: E \rightarrow M$ a surjective map. Let $\left(V_{i}, \varphi_{i}\right)_{i \in I}$ be an atlas for M and suppose we are given bijective maps $\Phi_{i}: \pi^{-1}\left(V_{i}\right) \rightarrow V_{i} \times \mathbb{R}^{k}$ satisfying $\pi_{1} \circ \Phi_{i}=\pi$ such that on $V:=V_{i} \cap V_{j}$ it holds that $\Phi_{i} \circ \Phi_{j}^{-1}: V \times \mathbb{R}^{k} \rightarrow V \times \mathbb{R}^{k}$ is of the form

$$
\begin{equation*}
\Phi_{i} \circ \Phi_{j}^{-1}((x, y))=\left(x, A_{i j}(x) y\right) \tag{9.1}
\end{equation*}
$$

for some for some smooth map $A_{i j}: V \rightarrow G L(k, \mathbb{R})$.
Then E has a unique structure of a rank- k vector bundle over M for which the maps Φ_{i} are local trivialisations.

Proof. For each $x \in M$ a vector space structure on $E_{x}:=\pi^{-1}(\{x\})$ is defined by choosing $i \in I$ with $x \in V_{i}$ and declaring the bijective map $\left.\Phi_{i}\right|_{x}: E_{x} \rightarrow\{x\} \times \mathbb{R}^{k}$ to be a linear isomorphism. This vector space structure is independent of the choice of i since by 9.1) $\left.\left.\Phi_{i}\right|_{x} \circ \Phi_{j}\right|_{x} ^{-1}=A(x)$ is an isomorphism of \mathbb{R}^{k}.
Declaring the compositions $\left(\varphi_{i}\right.$, id) $\circ \Phi_{i}: \pi^{-1}\left(V_{i}\right) \rightarrow \varphi_{i}\left(V_{i}\right) \times \mathbb{R}^{k} \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ to be homeomorphism resp. charts, we obtain a topology resp. a differentiable structure on E. Now, by definition, the maps Φ_{i} are diffeomorphisms and define local trivialisations of the bundle E.
9.10 Remark. Note that for a given vector bundle E the local trivialisations always satisfy (9.1).

9.11 Definition. The dual bundle

Given a vector bundle E over M one can define the dual bundle E^{*} with total space

$$
E^{*}=\left\{(x, v) \mid x \in M, v \in E_{x}^{*}\right\}
$$

and projection $\tilde{\pi}((x, v))=x$, where E_{x}^{*} denotes the dual space of the fibre E_{x} of E over x. Given a local trivialisation $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$ of E, let

$$
\Psi: \tilde{\pi}^{-1}(U) \rightarrow \mathbb{R}^{k}, \quad \Psi((x, v)):=(x, w) \quad \text { with } \quad w=\left(\left(\left.\Phi\right|_{x}\right)^{\dagger}\right)^{-1} v,
$$

where $\left(\left.\Phi\right|_{x}\right)^{\dagger}:\left(\mathbb{R}^{k}\right)^{*} \cong \mathbb{R}^{k} \rightarrow E_{x}^{*}$ denotes the adjoint map defined by

$$
\left(\left(\left.\Phi\right|_{x}\right)^{\dagger}(w) \mid v\right):=\left(w|\Phi|_{x}(v)\right) .
$$

For two such maps Ψ_{1} and Ψ_{2} we have that

$$
\left(\Psi_{1} \circ \Psi_{2}^{-1}\right)(x, w)=\left.\left.\left(\Phi_{1}^{\dagger}\right)^{-1}\right|_{x} \Phi_{2}^{\dagger}\right|_{x} w=\left(\left.\left.\Phi_{2}\right|_{x} \Phi_{1}^{-1}\right|_{x}\right)^{\dagger} w=A^{T}(x) w
$$

where $\left.\Phi_{2}\right|_{x} \Phi_{1}^{-1}{ }_{x} y=: A(x) y$. Hence, according to porposition 9.9. the Ψ_{i} define local trivialisations for a unique vector bundle E^{*}.
9.12 Example. The cotangent bundle $T^{*} M$ is the dual bundle of the tangent bundle $T M$.

9.13 Definition. The tensor product of vector bundles

Let E and F be vector bundles over M. Then the tensor product bundle $\pi: E \otimes F \rightarrow M$ is the bundle with fibre $E_{x} \otimes F_{x}$ over $x \in M$, i.e. with total space

$$
E \otimes F=\left\{(x, v) \mid x \in M, v \in E_{x} \otimes F_{x}\right\}
$$

and projection $\pi((x, v))=x$. We can again apply proposition 9.9. Choose local trivialisations $\Phi_{E, i}: \pi_{E}^{-1}\left(V_{i}\right) \rightarrow V_{i} \times \mathbb{R}^{n}$ and $\Phi_{F, i}: \pi_{F}^{-1}\left(V_{i}\right) \rightarrow V_{i} \times \mathbb{R}^{m}$ for each domain $V_{i} \subset M$ of an appropriate atlas. Then the fibre-wise tensor product maps

$$
\Psi_{i}:=\Phi_{E, i} \otimes \Phi_{F, i}: \pi_{1}^{-1}\left(V_{i}\right) \otimes \pi_{2}^{-1}\left(V_{i}\right) \rightarrow V_{i} \times\left(\mathbb{R}^{n} \otimes \mathbb{R}^{m}\right)
$$

are again fibre-wise and $\Psi_{i} \circ \Psi_{j}^{-1}$ are fibre-wise isomorphisms and thus satisfy 9.1).
9.14 Example. The tensor bundles $T_{s}^{r} M$ arise as the tensor products of the tangent and the cotangent bundles $T M$ and $T^{*} M$,

$$
T_{s}^{r} M=\underbrace{T M \otimes \cdots \otimes T M}_{r \text { copies }} \otimes \underbrace{T^{*} M \otimes \cdots \otimes T^{*} M}_{s \text { copies }} .
$$

9.15 Definition. Sections and frames

Let $\pi: E \rightarrow M$ be a rank- k vector bundle.
(a) A smooth function $S: M \rightarrow E$ with $\pi \circ S=\mathrm{id}_{M}$ is called a section (or global section) of E. A smooth function $S: M \supset U \rightarrow E$ defined on an open set $U \subset M$ with $\pi \circ S=\operatorname{id}_{U}$ is called a local section of E. We write $\Gamma(E)$ for the space of global sections of E and $\Gamma\left(\left.E\right|_{U}\right)$ for the space of local sections on $U \subset M$.
(b) A family of k local sections $\left(S_{1}, \ldots, S_{k}\right)$ such that $\left(S_{1}(x), \ldots, S_{k}(x)\right)$ is a basis of E_{x} for each $x \in U$ is called a local frame. If $U=M$, then $\left(S_{1}, \ldots, S_{k}\right)$ is called a global frame. The sections S_{j} in a frame are sometimes called basis sections.
9.16 Examples. (a) Vector fields on a manifold M are global sections of the tangent bundle, i.e. $\Gamma(T M)=\mathcal{T}_{0}^{1}(M)$.
(b) More generally, tensor fields are global sections of the tensor bundles, i.e. $\Gamma\left(T_{s}^{r} M\right)=\mathcal{T}_{s}^{r}(M)$.
(c) Functions $f \in C^{\infty}(M)$ are sections of the trivial bundle $M \times \mathbb{R}$.
(d) For any vector bundle $\pi: E \rightarrow M$ the zero-section $S(x)=0$ for all $x \in M$ is an embedding of M into E.
(e) Any chart on a manifold M yields local frames $\left(\partial_{q_{1}}, \ldots, \partial_{q_{n}}\right)$ and $\left(\mathrm{d} q^{1}, \ldots, \mathrm{~d} q^{n}\right)$ of the tangent bundle $T M$ resp. the cotangent bundle $T^{*} M$, so called coordinate frames.
9.17 Remark. Given a local frame $\left(S_{1}, \ldots, S_{k}\right)$ of a vector bundle E, any section $Y \in \Gamma(E)$ can be written as a linear combination of the elements of the frame since the latter form a basis of E_{x} at each point $x \in U \subset M$. We employ again the Einstein summation convention and write

$$
Y=Y^{j} S_{j} \quad \text { on } U
$$

where $Y^{j} \in C^{\infty}(U)$ for $j=1, \ldots, k$.
9.18 Proposition. A vector bundle $\pi: E \rightarrow M$ is trivialisable if and only if it admits a global frame.

Proof. Let $\Phi: E \rightarrow M \times \mathbb{R}^{k}$ be a global trivialisation and $\left(e_{1}, \ldots, e_{k}\right)$ the canonical basis of \mathbb{R}^{k}. Then $\left(S_{1}(x), \ldots, S_{k}(x)\right):=\left(\left.\Phi\right|_{x} ^{-1} e_{1}, \ldots,\left.\Phi\right|_{x} ^{-1} e_{k}\right)$ is a global frame.
Let conversely $\left(S_{1}, \cdots, S_{k}\right)$ be a global frame for E. Then

$$
\Phi: E \rightarrow M \times \mathbb{R}^{k}, \quad(x, v)=:\left(x, v^{i} S_{i}(x)\right) \mapsto\left(x,\left(v^{1}, \ldots, v^{k}\right)\right)
$$

is a global trivialisation.
9.19 Example. The tangent bundle $T S^{2}$ of the two-sphere S^{2} is not trivialisable since, as was shown as a homework assignment, every smooth vector field on S^{2} has at least one zero. Thus, no global frame for $T S^{2}$ can exist.

9.20 Definition. The endomorphism bundle

Let $\pi: E \rightarrow M$ be a vector bundle. Then the endomorphism bundle $\operatorname{End}(E)$ is the vector bundle over M whose fibre over $x \in M$ is $\operatorname{End}(E)_{x}=\mathcal{L}\left(E_{x}\right)$, i.e. the space of linear endomorphisms of the vector space E_{x}. The local trivializations $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k^{2}}$ are defined using the matrix representation with respect to local frames $\left(S_{1}, \ldots, S_{k}\right)$.
Since for any vector space V the space of endomorphisms $\mathcal{L}(V)$ is isomorphic to $V \otimes V^{*}$, we have that $\operatorname{End}(E) \cong E \otimes E^{*}$.

German nomenclature

```
fibre = Faser frame = Rahmen
section = Schnitt
total space = Totalraum
```

```
subbundle = Unterbündel
```

subbundle = Unterbündel
trivial = trivial

```
trivial = trivial
```

vector bundle $=$ Vektorbündel

10 Connections on vector bundles

Loosely speaking, a connection provides a way of taking directional derivatives of a section of a vector bundle. In particular, it allows to define the concept of "constant" or "parallel" sections and, along curves, to define "parallel transport".

10.1 Definition. Connections on vector bundles

Let $\pi: E \rightarrow M$ be a vector bundle and $\Gamma(E)$ the space of its smooth sections. A connection ∇ in E is a map

$$
\nabla: \mathcal{T}_{0}^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, S) \mapsto \nabla_{X} S,
$$

with the following properties:
(a) $X \mapsto \nabla_{X} S$ is linear over $C^{\infty}(M)$, i.e.

$$
\nabla_{f X+g Y} S=f \nabla_{X} S+g \nabla_{Y} S
$$

for all $f, g \in C^{\infty}(M), X, Y \in \mathcal{T}_{0}^{1}(M)$, and $S \in \Gamma(E)$.
(b) $S \mapsto \nabla_{X} S$ is \mathbb{R}-linear, i.e.

$$
\nabla_{X}(\alpha S+\beta \tilde{S})=\alpha \nabla_{X} S+\beta \nabla_{X} \tilde{S}
$$

for all $\alpha, \beta \in \mathbb{R}, X \in \mathcal{T}_{0}^{1}(M)$, and $S, \tilde{S} \in \Gamma(E)$.
(c) ∇ satisfies the product rule

$$
\nabla_{X}(f S)=(\mathrm{d} f \mid X) S+f \nabla_{X} S
$$

for all $f \in C^{\infty}(M), X \in \mathcal{T}_{0}^{1}(M)$, and $S \in \Gamma(E)$.
The section $\nabla_{X} S \in \Gamma(E)$ is called the covariant derivative of S in the direction of X. If $\nabla_{X} S=0$ for all $X \in \mathcal{T}_{0}^{1}(M)$ then S is called parallel or constant with respect to ∇.

10.2 Example. The trivial connection on a trivial bundle

Let $E=M \times V$ be a trivial vector bundle. Then sections $S: M \rightarrow M \times V, x \mapsto S(x)=:(x, s(x))$ are in one-to-one correspondence with smooth functions $s: M \rightarrow V, x \mapsto s(x)$. But for such functions we can define the derivative in the direction of a tangent vector $v \in T_{x} M$ as in the case of real-valued functions (cf. remark 2.4) pointwise as

$$
D_{v}(s):=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(s \circ c_{v}\right)(t)\right|_{t=0} \quad \text { for } v \in T_{x} M \text { with } v=\left[c_{v}\right]_{x} .
$$

Defining $\left(\nabla_{X} S\right)(x):=D_{X(x)}(s)$ we obtain the so called trivial connection on the trivial bundle $E=M \times V$. For $V=\mathbb{R}$ this is just the action of vector fields on functions, i.e. $\nabla_{X} S=(\mathrm{d} s \mid X)$, or equivalently but with different notation, $\nabla_{X} S=L_{X} s$. The properties of the Lie derivative acting on functions were collected in proposition 2.31 and show that ∇_{X} defines indeed a connection for this case. But the same argument leading to proposition 2.31 shows that the trivial connection is a connection also for vector valued functions.

10 Connections on vector bundles

10.3 Example. As a special case of example 10.2 we consider the exterior derivative on functions as a connection on the trivial bundle $M \times \mathbb{R}$, i.e. for $f \in C^{\infty}(M)=\Gamma(M \times \mathbb{R})$ set

$$
\mathrm{d}_{X} f:=(\mathrm{d} f \mid X)
$$

Given any 1-form $\omega \in \mathcal{T}_{1}^{0}(M)$, also the map

$$
\nabla_{X} f:=\mathrm{d}_{X} f+\omega(X) f
$$

defines a connection on $M \times \mathbb{R}$, denoted by $\mathrm{d}+\omega$. To see this, note that properties (a) and (b) of definition 10.1 are clearly satisfied. The product rule is an easy computation:

$$
\nabla_{X}(f g)=(\mathrm{d}(f g) \mid X)+\omega(X) f g=(\mathrm{d} f \mid X) g+f(\mathrm{~d} g \mid X)+f \omega(X) g=(\mathrm{d} f \mid X) g+f \nabla_{X} g
$$

Actually, as we will show later on, the set of all connections on $C^{\infty}(M)$ is given by

$$
\left\{\mathrm{d}+\omega \mid \omega \in \Lambda_{1}(M)\right\}
$$

Although this is not completely obvious from the definition, the value $\nabla_{X} S(x)$ of $\nabla_{X} S$ at a point x depends only on the value $X(x)$ of X at x. So $\nabla_{X} S(x)$ is really a directional derivative and, in contrast to the Lie derivative, not a derivative along a vector field.

10.4 Proposition. Locality of the covariant derivative

Let ∇ be a connection on a vector bundle $\pi: E \rightarrow M$. Let $X, \tilde{X} \in \mathcal{T}_{0}^{1}(M)$ and $S, \tilde{S} \in \Gamma(E)$ be such that for some $x \in M$ there exists an open neighbourhood $U \subset M$ of x with

$$
\left.S\right|_{U}=\left.\tilde{S}\right|_{U} \quad \text { and } \quad X(x)=\tilde{X}(x)
$$

Then $\nabla_{X} S(x)=\nabla_{\tilde{X}} \tilde{S}(x)$.
Proof. By linearity it suffices to show that $\nabla_{X} S(x)=0$ whenever $X(x)=0$ or $\left.S\right|_{U}=0$.
First assume that $\left.S\right|_{U}=0$ and $x \in U$. Now choose a bump function $f \in C_{0}^{\infty}(M)$ with $\operatorname{supp} f \subset U$ and $f(x)=1$. Then $f S=0$ on all of M and therefore

$$
\nabla_{X}(f S)=\nabla_{X}(0 \cdot f S)=0 \cdot \nabla_{X}(f S)=0
$$

On the other hand, by the product rule,

$$
\nabla_{X}(f S)=(\mathrm{d} f \mid X) S+f \nabla_{X} S=f \nabla_{X} S
$$

since in the first factor either $\mathrm{d} f$ or S vanishes. Hence, $\nabla_{X} S(x)=f(x) \nabla_{X} S(x)=0$.
Now let $\left.X\right|_{U}=0$. Then $f X=0$ on all of M and analogously

$$
f \nabla_{X} S=\nabla_{f X} S=\nabla_{0 \cdot f X} S=0 \cdot \nabla_{f X} S=0
$$

implies $\nabla_{X} S(x)=f(x) \nabla_{X} S(x)=0$.
Up to now we showed that $\nabla_{X} S(x)$ depends only on S and X in a neighbourhood of U of x. Hence, we can compute $\nabla_{X} S(x)$ using a local coordinate frame $\left(\partial_{1}, \ldots, \partial_{n}\right)$ on U. Let $X=X^{i} \partial_{i}$, then

$$
\nabla_{X} S(x)=\nabla_{X^{i} \partial_{i}} S(x)=X^{i}(x) \nabla_{\partial_{i}} S(x)
$$

Hence $\nabla_{X} S(x)=0$ whenever $X(x)=0$.
We emphasise once more that the preceding proposition tells us that $\nabla_{X} S(x)$ depends only on S in a neighbourhood of x and on $X(x)$. Hence, we can compute $\nabla_{X} S(x)$ using a local frame.

10.5 Definition. Christoffel symbols

Let $\left(Z_{1}, \ldots, Z_{n}\right)$ be a local frame for $T M,\left(S_{1}, \ldots, S_{k}\right)$ a local frame (on the same set $U \subset M$) for a vector bundle $\pi: E \rightarrow M$, and ∇ a connection on E. Then $\nabla_{Z_{i}} S_{\beta} \in \Gamma\left(\left.E\right|_{U}\right)$ can again be represented in terms of the basis sections S_{α} and the coefficients $\Gamma_{i \beta}^{\alpha} \in C^{\infty}(U)$ in

$$
\nabla_{Z_{i}} S_{\beta}=: \Gamma_{i \beta}^{\alpha} S_{\alpha}
$$

are called Christoffel symbols of ∇ with respect to these frames.

10.6 Lemma. A connection is determined by its Christoffel symbols

Let $\left(Z_{1}, \ldots, Z_{n}\right)$ be a local frame for the tangent bundle $T U \subset T M$ of a manifold $M,\left(S_{1}, \ldots, S_{k}\right)$ a local frame (on the same set $U \subset M$) for a vector bundle $\pi: E \rightarrow M, \nabla$ a connection on E, and $\Gamma_{i \beta}^{\alpha}$ its Christoffel symbols with respect to these frames. Let $X \in \mathcal{T}_{0}^{1}(M)$ and $Y \in \Gamma(E)$ be locally represented as $X=X^{j} Z_{j}$ and $Y=Y^{\alpha} S_{\alpha}$. Then, on U,

$$
\begin{equation*}
\nabla_{X} Y=\left(\left(\mathrm{d} Y^{\alpha} \mid X\right)+X^{i} Y^{\beta} \Gamma_{i \beta}^{\alpha}\right) S_{\alpha} \tag{10.1}
\end{equation*}
$$

Proof. The proof is a simple computation using the defining properties of a connection:

$$
\begin{aligned}
& \nabla_{X} Y=\nabla_{X}\left(\sum_{\alpha} Y^{\alpha} S_{\alpha}\right) \stackrel{10.11^{b}}{=} \sum_{\alpha} \nabla_{X}\left(Y^{\alpha} S_{\alpha}\right) \\
&=10.1{ }^{c)} \sum_{\alpha}\left(\left(\mathrm{d} Y^{\alpha} \mid X\right) S_{\alpha}+Y^{\alpha} \nabla_{\sum_{i} X^{i} Z_{i}} S_{\alpha}\right) \\
&=10.1(a) \\
& \sum_{\alpha}\left(\left(\mathrm{d} Y^{\alpha} \mid X\right) S_{\alpha}+Y^{\alpha} \sum_{i} X^{i} \nabla_{Z_{i}} S_{\alpha}\right)=\sum_{\alpha}\left(\left(\mathrm{d} Y^{\alpha} \mid X\right) S_{\alpha}+Y^{\alpha} \sum_{i, \beta} X^{i} \Gamma_{i \alpha}^{\beta} S_{\beta}\right) .
\end{aligned}
$$

We did not use the Einstein convention here to highlight that interchanging the summation with the action of ∇ is indeed justified. From now on we will take this fact for granted again and use the Einstein summation convention again.

Conversely, given local frames $\left(Z_{1}, \ldots, Z_{n}\right)$ for $T M$ and $\left(S_{1}, \ldots, S_{k}\right)$ for E on $U \subset M$, any choice of $n \cdot k^{2}$ smooth functions $\Gamma_{i \beta}^{\alpha} \in C^{\infty}(U), i=1, \ldots, n, \alpha, \beta=1, \ldots, k$ determines a connection by the formula (10.1).
10.7 Lemma. Let $\left(Z_{1}, \ldots, Z_{n}\right)$ be a local frame for the tangent bundle $T U \subset T M$ of a manifold M and $\left(S_{1}, \ldots, S_{k}\right)$ a local frame (on the same set $U \subset M$) for a vector bundle $\pi: E \rightarrow M$. Then for any choice of $\Gamma_{i \beta}^{\alpha} \in C^{\infty}(U), i=1, \ldots, n, \alpha, \beta=1, \ldots, k$, the expression

$$
\nabla_{X} Y:=\left(\left(\mathrm{d} Y^{\alpha} \mid X\right)+X^{i} Y^{\beta} \Gamma_{i \beta}^{\alpha}\right) S_{\alpha}
$$

defines a connection on $\left.E\right|_{U}$, where $X \in \mathcal{T}_{0}^{1}(M)$ and $Y \in \Gamma(E)$ with $X=X^{j} Z_{j}$ and $Y=Y^{\alpha} S_{\alpha}$.
Proof. The properties (a) and (b) of definition 10.1 are clearly satisfied. And the product rule follows from the product rule for the differential: for $f \in C^{\infty}(U)$ we have

$$
\begin{aligned}
\nabla_{X}(f Y) & =\left(\left(\mathrm{d}\left(f Y^{\alpha}\right) \mid X\right)+f X^{i} Y^{\beta} \Gamma_{i \beta}^{k}\right) S_{\alpha} \\
& =\left((\mathrm{d} f \mid X) Y^{\alpha}+f\left(\mathrm{~d} Y^{\alpha} \mid X\right)+f X^{i} Y^{\beta} \Gamma_{i \beta}^{k}\right) S_{\alpha} \\
& =(\mathrm{d} f \mid X) Y+f \nabla_{X} Y .
\end{aligned}
$$

10.8 Lemma. Tensor characterisation lemma

Let $\pi_{j}: E_{j} \rightarrow M, j=1, \ldots, m$, be vector bundles over M. A map

$$
\tau: \Gamma\left(E_{1}\right) \times \cdots \times \Gamma\left(E_{m}\right) \rightarrow C^{\infty}(M)
$$

is induced by a section $F \in \Gamma\left(E_{1}^{*} \otimes \cdots \otimes E_{m}^{*}\right)$ in the sense that

$$
\begin{equation*}
\tau\left(Y_{1}, \ldots, Y_{m}\right)(x)=\left(F(x) \mid Y_{1}(x), \ldots, Y_{m}(x)\right) \tag{10.2}
\end{equation*}
$$

if and only if it is $C^{\infty}(M)$-linear in all arguments, i.e.

$$
\tau\left(Y_{1}, \ldots, Y_{j}+f \tilde{Y}, \ldots, Y_{m}\right)=\tau\left(Y_{1}, \ldots, Y_{m}\right)+f \tau\left(Y_{1}, \ldots, \tilde{Y}, \ldots, Y_{m}\right)
$$

for all $f \in C^{\infty}(M), Y_{j} \in \Gamma\left(E_{j}\right)$, and $j=1, \ldots, m$.
Proof. Let $F \in \Gamma\left(E_{1}^{*} \otimes \cdots \otimes E_{m}^{*}\right)$ be given. Then $F(x) \in E_{1, x}^{*} \otimes \cdots \otimes E_{m, x}^{*}$ and thus the map τ defined by 10.2 is $C^{\infty}(M)$-linear in all arguments. On the other hand, for a given $C^{\infty}(M)$ -multi-linear map τ, the map

$$
F(x): E_{1, x} \times \cdots \times E_{m, x} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{m}\right) \mapsto \tau\left(Y_{1}, \ldots, Y_{m}\right)(x)
$$

for any choice of $Y_{j} \in \Gamma\left(E_{j}\right)$ with $Y_{j}(x)=v_{j}$ is well defined and multi-linear: By a bump function argument completely analogous to the one in the proof of proposition 10.4 one can show that $\tau\left(Y_{1}, \ldots, Y_{m}\right)(x)$ depends only on the Y_{j} in a neighbourhood of x. Then, using local sections we see that for $Y_{j}=Y_{j}^{i} S_{j, i}$

$$
\tau\left(Y_{1}, \ldots, Y_{m}\right)(x)=\tau\left(Y_{1}^{i_{1}} S_{1, i_{1}}, \ldots, Y_{m}^{i_{m}} S_{m, i_{m}}\right)(x)=Y_{1}^{i_{1}}(x) \cdots Y_{m}^{i_{m}}(x) \tau\left(S_{1, i_{1}}, \ldots, S_{m, i_{m}}\right)(x)
$$

depends only on the values of Y_{i} at x.

10.9 Definition. The total covariant derivative

Let ∇ be a connection on E and $Y \in \Gamma(E)$. Then $\nabla Y \in \Gamma\left(T^{*} M \otimes E\right)$ defined by the $C^{\infty}(M)$ bilinear map

$$
\nabla Y: \Gamma\left(E^{*}\right) \times \mathcal{T}_{0}^{1}(M) \rightarrow C^{\infty}(M), \quad(S, X) \mapsto \nabla Y(S, X):=\left(\nabla_{X} Y \mid S\right)
$$

is called the total covariant derivative of Y.
10.10 Notation. When one writes the components of a total covariant derivative ∇Y of a section $Y \in \Gamma(E)$, one uses a semicolon to separate the index that results from differentiation: for $Y=Y^{i} S_{i}$ one writes

$$
\nabla Y=Y_{; k}^{i} \quad S_{i} \otimes \mathrm{~d} q^{k} \in \Gamma\left(E \otimes T^{*} M\right)
$$

10.11 Proposition. The difference of two connections

Let ∇ and $\tilde{\nabla}$ be connections on a vector bundle $\pi: E \rightarrow M$. Then there exists a unique endomorphism-valued 1-form ω, i.e. a section of the vector bundle $T^{*} M \otimes \operatorname{End}(E)$, such that

$$
\nabla_{X} Y-\tilde{\nabla}_{X} Y=\omega(X) Y
$$

where $(\omega(X) Y)(x):=\omega(X)(x) Y(x)$ denotes the pointwise action of the linear map $\omega(X)(x) \in$ $\mathcal{L}\left(E_{x}\right)$ on $Y(x) \in E_{x}$.
Conversely, given a connection ∇ and an $\omega \in \Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right)$, then the map

$$
\nabla+\omega: \mathcal{T}_{0}^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, Y) \mapsto \nabla_{X} Y+\omega(X) Y
$$

defines a connection on E.

Proof. By the tensor characterisation lemma we need to show that the map

$$
\nabla-\tilde{\nabla}: \mathcal{T}_{0}^{1}(M) \times \Gamma(E) \times \Gamma\left(E^{*}\right) \rightarrow C^{\infty}(M), \quad(X, Y, Z) \mapsto\left(\nabla_{X} Y-\tilde{\nabla}_{X} Y \mid Z\right)
$$

is $C^{\infty}(M)$-linear in all arguments. This holds by definition for X and Z and for Y it follows from the product rule,
$\left(\nabla_{X}(f Y)-\tilde{\nabla}_{X}(f Y) \mid Z\right)=\left((\mathrm{d} f \mid X) Y+f \nabla_{X} Y-(\mathrm{d} f \mid X) Y-f \tilde{\nabla}_{X} Y \mid Z\right)=f\left(\nabla_{X} Y-\tilde{\nabla}_{X} Y \mid Z\right)$.
To see that $\nabla+\omega$ is a connection for every $\omega \in \Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right)$, note that (a) and (b) of definition 10.1 are obvious, and the product rule (c) follows easily,

$$
\nabla_{X}(f Y)+\omega(X) f Y=(\mathrm{d} f \mid X) Y+f \nabla_{X} Y+f \omega(X) Y=(\mathrm{d} f \mid X) Y+f\left(\nabla_{X} Y+\omega(X) Y\right)
$$

10.12 Remark. Proposition 10.11 shows that the set of connections on a vector bundle E is not a linear set. For example, if ∇ and $\tilde{\nabla}$ are connections, then neither $\nabla+\tilde{\nabla}$ nor $\frac{1}{2} \nabla$ is a connection, since neither $\nabla+\tilde{\nabla}-\nabla=\tilde{\nabla}$ nor $\frac{1}{2} \nabla-\nabla=-\frac{1}{2} \nabla$ are endomorphism-valued 1-forms. Alternatively one can check directly that neither of them satisfies the product rule.
Instead, given a connection ∇ on E, the set of connections is

$$
\left\{\nabla+\omega \mid \omega \in \Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right)\right\}
$$

i.e. it is an affine space over the vector space $\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right)$.

In the following chapters we will be mainly concerned with connections on the tangent bundle.

10.13 Definition. Affine connections

A connection

$$
\nabla: \mathcal{T}_{0}^{1}(M) \times \Gamma(T M) \rightarrow \Gamma(T M)
$$

on the tangent bundle $T M$ of a smooth manifold M is called an affine connection or linear connection or just a connection on M. (Note that the terminology in the literature is not at all uniform in this respect.) We used the different notations for the same object $\Gamma(T M)=\mathcal{T}_{0}^{1}(M)$ in order to emphasise the different roles played by the two factors.
10.14 Remark. Note once more that an affine connection ∇ is not a tensor field of type $(1,2)$ since it is not linear over $C^{\infty}(M)$ in the second argument, but instead satisfies the product rule. However, given a connection ∇ and a tensor field $A \in \mathcal{T}_{2}^{1}(M)=\Gamma\left(T^{*} M \otimes \operatorname{End}(T M)\right)$, also

$$
\nabla+A:(X, Y) \mapsto \nabla_{X} Y+A(X, Y)
$$

is a connection on M. Actually, by proposition 10.11, the set of all affine connections is precisely the affine space $\left\{\nabla+A \mid A \in \mathcal{T}_{2}^{1}(M)\right\}$ over the vector space $\mathcal{T}_{2}^{1}(M)$.

10.15 Definition. Christoffel symbols for an affine connection

For an affine connection ∇ it suffices to choose a local frame (Z_{1}, \ldots, Z_{n}) of the tangent bundle $T U \subset T M$ in order to define the Christoffel symbols

$$
\nabla_{Z_{i}} Z_{j}=: \Gamma_{i j}^{k} Z_{k}
$$

Note that a chart on $U \subset M$ provides a local coordinate frame $\left(\partial_{1}, \ldots, \partial_{n}\right)$ and thus corresponding Cristoffel symbols $\nabla_{\partial_{i}} \partial_{j}=\Gamma_{i j}^{k} \partial_{k}$.

10 Connections on vector bundles

10.16 Proposition. Every manifold admits an affine connection.

Proof. Let $\mathcal{A}=\left(V_{\alpha}, \varphi_{\alpha}\right)$ be an atlas for M and $\left(\chi_{\alpha}\right)$ an adapted partition of unity. Then on each coordinate patch V_{α} we can choose an arbitrary family of smooth functions $\Gamma_{\alpha, i j}^{k} \in C^{\infty}\left(V_{\alpha}\right)$ in order to define a connection ∇^{α} with the help of the frame $\left(\partial_{q_{1}^{\alpha}}, \ldots, \partial_{q_{n}^{\alpha}}\right)$ of $T V_{\alpha}$ as in lemma 10.7. Now we define

$$
\nabla_{X} Y:=\sum_{\alpha} \chi_{\alpha} \nabla_{X}^{\alpha} Y
$$

Again it is obvious that properties (a) and (b) of definition 10.1 are inherited from the corresponding properties of ∇^{α}. For the product rule we find that

$$
\nabla_{X}(f Y)=\sum_{\alpha} \chi_{\alpha} \nabla_{X}^{\alpha}(f Y)=\sum_{\alpha} \chi_{\alpha}\left((\mathrm{d} f \mid X) Y+f \nabla_{X}^{\alpha} Y\right)=(\mathrm{d} f \mid X) Y+f \nabla_{X} Y
$$

A connection on the tangent bundle $T M$ of a manifold M can be canonically lifted to a connection on all tensor bundles $T_{s}^{r} M$.

10.17 Proposition. The lift of an affine connection to tensor bundles

Given be an affine connection $\widetilde{\nabla}$ on M, there exists a unique family of connections $\nabla=\left(\nabla_{s}^{r}\right)$ on the tensor bundles $T_{s}^{r} M$ with the following properties:
(a) On $T_{0}^{0} M, \nabla_{X} f=\mathrm{d}_{X} f:=(\mathrm{d} f \mid X)$.
(b) On $T M, \nabla=\widetilde{\nabla}$.
(c) ∇ obeys the product rule with respect to tensor products,

$$
\nabla_{X}(F \otimes G)=\left(\nabla_{X} F\right) \otimes G+F \otimes\left(\nabla_{X} G\right)
$$

where F and G are tensor fields of arbitrary type.
(d) ∇ commutes with all contractions: if "tr" denotes the contraction of any pair of indices (one upper and one lower), then

$$
\nabla_{X}(\operatorname{tr} F)=\operatorname{tr}\left(\nabla_{X} F\right)
$$

This connection satisfies the following additional properties:
(i) Let $\omega \in \Lambda_{1}(M)$ and $Y \in \mathcal{T}_{0}^{1}(M)$. Then

$$
\left(\nabla_{X} \omega\right)(Y)=\mathrm{d}_{X} \omega(Y)-\omega\left(\nabla_{X} Y\right)
$$

(ii) For any tensor $F \in \mathcal{T}_{s}^{r}(M)$, vector fields $Y_{j} \in \mathcal{T}_{0}^{1}(M)$, and 1-forms $\omega^{i} \in \Lambda_{1}(M)$, it holds that

$$
\begin{aligned}
\left(\nabla_{X} F\right)\left(\omega^{1}, \ldots, \omega^{r}, Y_{1}, \ldots, Y_{s}\right)= & \mathrm{d}_{X} F\left(\omega^{1}, \ldots, \omega^{r}, Y_{1}, \ldots, Y_{s}\right) \\
& -\sum_{i=1}^{r} F\left(\omega^{1}, \ldots, \nabla_{X} \omega^{i}, \ldots, \omega^{r}, Y_{1}, \ldots, Y_{s}\right) \\
& -\sum_{j=1}^{s} F\left(\omega^{1}, \ldots, \omega^{r}, Y_{1}, \ldots, \nabla_{X} Y_{j}, \ldots, Y_{s}\right) .
\end{aligned}
$$

Proof. We only sketch the strategy of the proof. By (a) and (b) the action of ∇ on functions and vector fields is fixed. Now we use (i) to define the action of ∇ on 1-forms, $\left(\nabla_{X} \omega \mid Y\right):=$ $\mathrm{d}_{X}(\omega \mid Y)-\left(\omega \mid \nabla_{X} Y\right)$, and then (ii) to define the action of ∇ on arbitrary tensor fields. Now one needs to check that ∇ really defines a connection on each tensor bundle and that the properties (c) and (d) are also satisfied. Uniqueness follows, finally, by showing that the properties (a)-(d) imply (i) and (ii).
10.18 Remark. Let ∇ be an affine connection. Then in a local coordinate chart its action on 1 -forms is given by

$$
\nabla_{X} \omega=\left(X^{i} \partial_{i} \omega_{j}-X^{i} \omega_{k} \Gamma_{i j}^{k}\right) \mathrm{d} q^{j}
$$

Proof. Homework assignment.
10.19 Lemma. Let ∇ be an affine connection and $F \in \mathcal{T}_{s}^{r}(M)$. Then the components of its total covariant derivative ∇F with respect to a local coordinate basis are

$$
F_{i_{1} \ldots i_{s} ; k}^{j_{1} \ldots j_{r}}=\partial_{k} F_{i_{1} \ldots i_{s}}^{j_{1} \ldots j_{r}}+\sum_{m=1}^{r} F_{i_{1} \ldots i_{s}}^{j_{1} \ldots p \ldots j_{r}} \Gamma_{k p}^{j_{m}}-\sum_{m=1}^{s} F_{i_{1} \ldots \ldots \ldots i_{s}}^{j_{1} \ldots j_{r}} \Gamma_{k i_{m}}^{p} .
$$

Proof. This follows from lemma 10.6, proposition 10.17 (ii), and remark 10.18 .
While in general there need not exist parallel sections for a given connection (except from the zero section), one can always construct parallel sections along curves by so called parallel transport. In order to define parallel transport we need to introduce some more terminology.

10.20 Definition. Sections along curves

Let $\pi: E \rightarrow M$ be a vector bundle, $I \subset \mathbb{R}$ an interval, and $u: I \rightarrow M$ a smooth curve. Then a smooth map $Y: I \rightarrow E$ such that $\pi \circ Y=u$ is called a section along u. If there exists a section $\tilde{Y} \in \Gamma(E)$ such that $Y=\tilde{Y} \circ u$, then Y is called extendible.
The space of sections along u is denoted by $\Gamma(u)$. For the space of (r, s)-tensor fields along a curve u we write $\mathcal{T}_{s}^{r}(u)$.
10.21 Example. Any section $\tilde{Y} \in \Gamma(E)$ defines a section Y along u through $Y:=\tilde{Y} \circ u$. By definition, such a Y is extendible.
10.22 Example. The velocity vector field along a curve

Let $u: I \rightarrow M$ be a smooth curve. Then the velocity vector field $\dot{u}:=D u \circ e$ is a vector field along u, cf. definition 7.1. If u has self-intersections then, typically, \dot{u} is not extendible, as u can pass through a self-intersection with different velocities at different times.

Let ∇ be a connection on the vector bundle $\pi: E \rightarrow M$ and $u: I \rightarrow M$ a smooth curve. For any extendible section Y along u we can define its covariant derivative along u by choosing an extension \tilde{Y} with $Y=\tilde{Y} \circ u$ and setting

$$
D_{t} Y: I \rightarrow E, \quad t \mapsto\left(\nabla_{\dot{u}(t)} \tilde{Y}\right)(u(t)),
$$

i.e. by taking at each point $u(t)$ on the curve the covariant derivative of \tilde{Y} in the direction $\dot{u}(t)$. Intuitively we expect that this derivative does not depend on the choice of the extension \tilde{Y} and that a similar map should also exist for non-extendible sections along u.

10.23 Proposition. Covariant derivative along a curve

Let ∇ be a connection on the vector bundle $\pi: E \rightarrow M$ and $u: I \rightarrow M$ a smooth curve. Then there exists a unique operator

$$
D_{t}: \Gamma(u) \rightarrow \Gamma(u)
$$

satisfying the following properties:
(a) D_{t} is \mathbb{R}-linear, i.e. $D_{t}(a X+b Y)=a D_{t} X+b D_{t} Y$ for all $a, b \in \mathbb{R}$ and $X, Y \in \Gamma(u)$.
(b) D_{t} satisfies the product rule: $D_{t}(f Y)=\dot{f} Y+f D_{t} Y$ for all $f \in C^{\infty}(I)$ and $Y \in \Gamma(u)$.
(c) For extendible $Y \in \Gamma(u)$ and any extension \tilde{Y} of Y it holds that $\left(D_{t} Y\right)(t)=\left(\nabla_{\dot{u}(t)} \tilde{Y}\right)(u(t))$. $D_{t} Y$ is called the covariant derivative of Y along u.

Proof. We only sketch the proof. First assume that a map D_{t} with the claimed properties exists. Using the product rule (b) one concludes in the usual way that $D_{t} Y\left(t_{0}\right)$ depends only on the values of Y in a neighbourhood of t_{0}. The properties (a), (b), and (c) imply that with respect to a local frame $\left(\tilde{S}_{1}, \ldots, \tilde{S}_{k}\right)$ defined on a neighbourhood U of $u(t)$ we have with $Y=Y^{\alpha} S_{\alpha}$ and $S_{\alpha}:=\tilde{S}_{\alpha} \circ u$ that

$$
\begin{array}{rll}
D_{t} Y(t) & \stackrel{(\mathrm{a}),(\mathrm{b})}{=} & \dot{Y}^{\alpha}(t) S_{\alpha}(t)+Y^{\alpha}(t) D_{t} S_{\alpha}(t) \\
& \stackrel{(\mathrm{c})}{=} & \dot{Y}^{\alpha}(t) \tilde{S}_{\alpha}(u(t))+Y^{\alpha}(t)\left(\nabla_{\dot{u}(t)} \tilde{S}_{\alpha}\right)(u(t)) \\
& =\left(\dot{Y}^{\alpha}(t)+Y^{\beta}(t) \dot{u}^{i}(t) \Gamma_{i \beta}^{\alpha}(u(t))\right) \tilde{S}_{\alpha}(u(t)) \tag{10.3}
\end{array}
$$

This proves, in particular, uniqueness. To prove existence, we use the coordinate expression 10.3) as a local definition of D_{t} and need to check that it really satisfies (a), (b), and (c). For (a) and (b) this is obvious. For (c) we just revert the above computation and find with 10.1 that for any extension \tilde{Y} of Y we have

$$
\begin{aligned}
&\left(\nabla_{\dot{u}(t)} \tilde{Y}\right)(u(t)) \stackrel{10.1}{=}\left(\left(\mathrm{d} \tilde{Y}^{\alpha}(u(t)) \mid \dot{u}(t)\right)+\tilde{Y}^{\beta}(u(t)) \dot{u}^{i}(t) \Gamma_{i \beta}^{\alpha}(u(t))\right) \tilde{S}_{\alpha}(u(t)) \\
&=\left(\left.\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{Y}^{\alpha}(u(s))\right|_{s=t}+Y^{\beta}(t) \dot{u}^{i}(t) \Gamma_{i \beta}^{\alpha}(u(t))\right) \tilde{S}_{\alpha}(u(t)) \\
&=\left(\left.\frac{\mathrm{d}}{\mathrm{~d} s} Y^{\alpha}(s)\right|_{s=t}+Y^{\beta}(t) \dot{u}^{i}(t) \Gamma_{i \beta}^{\alpha}(u(t))\right) \tilde{S}_{\alpha}(u(t))=D_{t} Y(t)
\end{aligned}
$$

Hence we have local existence of D_{t} on sets where a frame exists. By uniqueness the local expressions agree on intersections of local domains and thus we have also global existence.

10.24 Lemma. D_{t} and reparametrisations of curves

Let ∇ be a connection on the vector bundle $\pi: E \rightarrow M, u: I \rightarrow M$ a smooth curve, and $Y \in \Gamma(u)$. For a diffeomorphism $\Phi: \tilde{I} \rightarrow I$ of open intervals let $\tilde{u}:=u \circ \Phi$ be the reparametrised curve $\tilde{u}: \tilde{I} \rightarrow M$ and $\tilde{Y}:=Y \circ \Phi \in \Gamma(\tilde{u})$. Then

$$
D_{t} \tilde{Y}=\Phi^{\prime} \cdot D_{t} Y \circ \Phi
$$

Proof. This follows from the observation that in 10.3) we have $\frac{\mathrm{d}}{\mathrm{d} s} \tilde{Y}^{\alpha}(s)=\dot{Y}^{\alpha}(\Phi(s)) \Phi^{\prime}(s)$ and also $\frac{\mathrm{d}}{\mathrm{d} s} \tilde{u}^{i}(s)=\dot{u}^{i}(\Phi(s)) \Phi^{\prime}(s)$.

10.25 Definition. Parallel sections

A section Y along a curve $u: I \rightarrow M$ of a vector bundle $\pi: E \rightarrow M$ is called parallel with respect to a connection ∇ on E, if

$$
D_{t} Y \equiv 0
$$

10.26 Proposition. Parallel transport

Let ∇ be a connection on a vector bundle $\pi: E \rightarrow M$ and $u: I \rightarrow M$ a smooth curve.
Let $t_{0} \in I$ and $Y_{0} \in E_{u\left(t_{0}\right)}$. Then there exists a unique parallel section Y along u with $Y\left(t_{0}\right)=Y_{0}$. The map $T_{t, t_{0}}: E_{u\left(t_{0}\right)} \rightarrow E_{u(t)}, Y_{0} \mapsto T_{t, t_{0}} Y_{0}:=Y(t)$, is a linear isomorphism and called the parallel transport map.
The parallel transport does not depend on the parametrisation of the curve: Let $\Phi: \tilde{I} \rightarrow I$ be a diffeomorphism of open intervals, $\tilde{u}:=u \circ \Phi$ the reparametrised curve, and $\tilde{T}_{s, s_{0}}$ its parallel transport map. Then

$$
\tilde{T}_{s, s_{0}}=T_{\Phi(s), \Phi\left(s_{0}\right)}
$$

Proof. According to 10.3 , within a coordinate patch the condition $D_{t} Y=0$ is a homogeneous first order linear ODE,

$$
\dot{Y}^{\alpha}(t)=-\dot{u}^{i}(t) \Gamma_{i \beta}^{\alpha}(u(t)) Y^{\beta}(t)=: A_{\beta}^{\alpha}(t) Y^{\beta}(t),
$$

where $A_{\beta}^{\alpha}(t)$ is a smooth matrix-valued function of t. Hence, given an initial value $Y^{\alpha}\left(t_{0}\right)$ it has a unique smooth solution and the solution map $T_{t, t_{0}}$ (propagator) is for each $t \in I$ an isomorphism. Uniqueness allows to patch the local solutions within coordinate charts together.
The last claim is a consequence of uniqueness and lemma 10.24 .

10.27 Definition. Geodesics

Let ∇ be an affine connection on M. Then a curve $u: I \rightarrow M$ is called a geodesic for the connection ∇ if its velocity vector field is parallel, i.e. if

$$
D_{t} \dot{u} \equiv 0 .
$$

10.28 Remark. One possible rephrasing of the definition of a geodesic is a "curve of constant speed": the velocity vector field \dot{u} is constant with repsect to the given connection. One could also say that the "acceleration" $D_{t} \dot{u}$ vanishes.

In order to prove existence and uniqueness of geodesics, given a starting point $x_{0} \in M$ and an initial velocity $v_{0} \in T_{x_{0}} M$, we first observe that, using again 10.3), the geodesic equation $D_{t} \dot{u}=0$ takes the following form within a coordinate chart (V, φ) :

$$
\begin{equation*}
\ddot{u}^{k}(t)+\dot{u}^{i}(t) \dot{u}^{j}(t) \Gamma_{i j}^{k}(u(t))=0 . \tag{10.4}
\end{equation*}
$$

Note that by definition $u^{k}(t):=\left(\varphi(u(t))^{k}\right.$ and $\dot{u}(t)=:\left(\dot{u}^{k}(t) \partial_{q_{k}}\right)(u(t))$, and thus indeed $\dot{u}^{k}(t)=$ $\frac{\mathrm{d}}{\mathrm{d} t} u^{k}(t)$. 10.4) is a system of second order ODEs for the components $u^{k}(t)$ of $(\varphi \circ u)(t)$ on $\varphi(V)$. Introducing $v^{k}(t):=\dot{u}^{k}(t), 10.4$ is equivalent to the system of first order ODEs

$$
\begin{equation*}
\dot{u}^{k}(t)=v^{k}(t) \quad \text { and } \quad \dot{v}^{k}(t)=-v^{i}(t) v^{j}(t) \Gamma_{i j}^{k}(u(t)) \quad \text { on } \varphi(V) \times \mathbb{R}^{n} . \tag{10.5}
\end{equation*}
$$

Now we could either use local existence and uniqueness of solutions to this ODE to prove local unique existence of geodesics and patch the local solutions together in order to obtain maximal solutions. Or we observe that (10.5) defines actually a vector field on the tangent bundle TM. To see this first recall that any chart (V, φ) on M defines a bundle chart

$$
D \varphi: T V \rightarrow \varphi(V) \times \mathbb{R}^{n}, \quad(x, v) \mapsto D \varphi(x, v)=:(q(x), \dot{q}(x, v))
$$

on the tangent bundle $T V$. Note that the dot in \dot{q} is not a time derivative but \dot{q} is just the name for a generic point in the second factor of $\varphi(V) \times \mathbb{R}^{n}$. Using these local coordinates and the corresponding coordinate vector fields, we can define a vector field \mathbf{X} on $T V$ by

$$
\mathbf{X}(x, v):=v^{k} \partial_{q_{k}}-v^{j} v^{i}\left(\Gamma_{i j}^{k} \circ \pi_{M}\right)(x) \partial_{\dot{q}_{k}} .
$$

By construction, $u: I \rightarrow V$ is a geodesic if and only if the curve $\dot{u}: I \rightarrow T V, \dot{u}=D u \circ e$ is an integral curve to \mathbf{X}. To see this, note that for a curve

$$
w: I \rightarrow T V, \quad t \mapsto w(t)=\left(u(t), v^{k}(t) \partial_{q_{k}}\right)
$$

we have that

$$
\dot{w}: I \rightarrow T(T V), \quad t \mapsto\left(\left(u(t), v^{k}(t) \partial_{q_{k}}\right), \dot{u}^{k}(t) \partial_{q_{k}}+\dot{v}^{k}(t) \partial_{\dot{q}_{k}}\right)
$$

10 Connections on vector bundles

and

$$
\mathbf{X}(w(t))=\mathbf{X}\left(u(t), v^{k}(t) \partial_{q_{k}}\right)=\left(\left(u(t), v^{k}(t) \partial_{q_{k}}\right), v^{k}(t) \partial_{q_{k}}-v^{j}(t) v^{i}(t) \Gamma_{i j}^{k}(u(t)) \partial_{\dot{q}_{k}}\right)
$$

Hence, comparing the coefficients, we see that $\dot{w}=X(w(t))$ is equivalent to 10.5).
Since the geodesic equations are independet of the choice of coordinates, \mathbf{X} is defined actually on all of $T M$ and $u: I \rightarrow M$ is a geodesic if and only if \dot{u} is an integral curve to \mathbf{X}.

10.29 Proposition. Existence of unique maximal geodesics and the geodesic flow

Let ∇ be an affine connection on M. For each $x_{0} \in M$ and $v_{0} \in T_{x_{0}} M$ there exists a unique maximal geodesic $\gamma_{x_{0}, v_{0}}: I_{x_{0}, v_{0}} \rightarrow M$ with $\dot{\gamma}_{x_{0}, v_{0}}(0)=\left(x_{0}, v_{0}\right)$. The corresponding flow $\Phi^{\mathbf{X}}$ on $T M$ is called the geodesic flow.
Moreover, for any $\alpha \in \mathbb{R} \backslash\{0\}$ it holds that

$$
I_{x_{0}, \alpha v_{0}}=\frac{1}{\alpha} I_{x_{0}, v_{0}} \quad \text { and } \quad \gamma_{x_{0}, \alpha v_{0}}(t)=\gamma_{x_{0}, v_{0}}(\alpha t) .
$$

Hence, if one starts at the same point in the same direction with a different velocity, one runs through the same curve just with a different speed.

Proof. For existence and uniqueness just apply theorem 7.5 to the vector field \mathbf{X} on TM. To prove the second claim, either check directly that also $t \mapsto \gamma_{x_{0}, v_{0}}(\alpha t)$ is a geodesic by inserting it into the differential equation. Or note that on a geodesic the velocity field is obtained by parallel transport of the initial velocity vector along the curve and that parallel transport is linear in the fibres.
10.30 Remark. Note that $T M$ is never compact. Thus we don't get easily a global existence result for geodesics of general connections. Indeed, one can easily construct examples where the integral curves to \mathbf{X} run to "infinity in the fibres" of $T M$ in finite time.
In the next chapter we will discuss the affine connection induced by a Riemannian metric. For this so called Levi-Civita connection, however, we will obtain global existence of geodesics on compact manifolds M since the "length" of the velocity vector remains constant along a Riemannian geodesic.

By following the geodesic starting in a point x with a velocity v for a fixed time, say $t=1$, one obtains a map from (a subset of) $T M$ to M, the so called exponential map.

10.31 Definition. The exponential map

Let ∇ be an affine connection on M and $\gamma_{x, v}: I_{x, v} \rightarrow M$ the maximal geodesic of ∇ starting at x with velocity v. The exponential map

$$
\exp _{x}: T_{x} M \supset \mathcal{E}_{x} \rightarrow M, \quad v \mapsto \exp _{x}(v):=\gamma_{x, v}(1),
$$

is defined on $\mathcal{E}_{x}:=\left\{v \in T_{x} M \mid 1 \in I_{x, v}\right\}$, and

$$
\exp : T M \supset \mathcal{E} \rightarrow M, \quad(x, v) \mapsto \exp _{x}(v)
$$

is defined on $\mathcal{E}:=\left\{(x, v) \in T M \mid v \in \mathcal{E}_{x}\right\}$.

10.32 Proposition. Properties of the exponential map

(a) \mathcal{E} is an open subset of $T M$ containing the zero-section and exp: $\mathcal{E} \rightarrow M$ is smooth.
(b) Each set \mathcal{E}_{x} is star shaped with respect to 0 , i.e. $v \in \mathcal{E}_{x}$ implies that also $\alpha v \in \mathcal{E}_{x}$ for all $\alpha \in[0,1]$.
(c) For $t \in I_{x, v}$ it holds that

$$
\gamma_{x, v}(t)=\exp _{x}(t v)
$$

Proof. According to theorem 7.5 the maximal domain $D_{t}:=\left\{(x, v) \in T M \mid t \in I_{x, v}\right\}$ of the geodesic flow

$$
\Phi_{t}^{\mathbf{X}}: D_{t} \rightarrow T M
$$

is open for any $t \in \mathbb{R}$ and $\Phi_{t}^{\mathbf{X}}$ is a diffeomorphism onto its range. Now (a) follows from noting that $\mathcal{E}=D_{1}$ and $\exp =\pi_{M} \circ \Phi_{1}^{\mathbf{X}}$. Claims (b) and (c) follow immediately from the rescaling property of geodesics shown in proposition 10.29 .

For the next lemma we require the manifolds version of the inverse function theorem.

10.33 Theorem. Inverse function theorem

Let $f: M_{1} \rightarrow M_{2}$ be a smooth map between manifolds M_{1} and M_{2}. If $\left.D f\right|_{T_{x} M_{1}}$ is invertible at a point $x \in M_{1}$, then there exist open neighbourhoods U of x and V of $f(x)$ such that $f: U \rightarrow V$ is a diffeomorphism.

Proof. Just apply the inverse function theorem for maps on \mathbb{R}^{n} within local charts.

10.34 Lemma. Normal neighbourhood lemma

Let M be a manifold with affine connection ∇. For each $x \in M$ there exists a star shaped open neighbourhood $\mathcal{V}_{x} \subset \mathcal{E}_{x}$ of $0 \in T_{x} M$ such that

$$
\exp _{x}: \mathcal{V}_{x} \rightarrow \exp _{x}\left(\mathcal{V}_{x}\right)
$$

is a diffeomorphism. Such a neighbourhood $\exp _{x}\left(\mathcal{V}_{x}\right)$ is called a normal neighbourhood of x.
Proof. It suffices to show that the differential $D \exp _{x}$ is invertable at $0 \in T_{x} M$, i.e. that the map

$$
D \exp _{x}: T_{0}\left(T_{x} M\right) \cong T_{x} M \rightarrow T_{\exp _{x}(0)} M=T_{x} M
$$

is invertible. However, $\exp _{x}$ maps the curve $c(t)=t v$ in $T_{x} M$ to the curve $\exp _{x}(t v)=\gamma_{x, v}(t)$ in M. By definition of the geodesic $\gamma_{x, v}$ we have that $\left.\frac{\mathrm{d}}{\mathrm{d} t} \gamma_{x, v}(t)\right|_{t=0}=v$, and thus $D \exp _{x}$ restricted to $T_{0}\left(T_{x} M\right)$ is actually the identity and, in particular, invertible.

German nomenclature

```
connection = Zusammenhang covariant derivative = Kovariante Ableitung
exponential map = Exponentialabbildung
inverse function = Umkehrfunktion
geodesic = Geodäte
parallel transport = Paralleltransport
section along a curve = Schnitt entlang einer Kurve
```


11 The Riemannian connection

For a (pseudo-)Riemannian manifold (M, g), i.e. a manifold M with a (pseudo-)metric $g \in \mathcal{T}_{2}^{0}(M)$, there exists a natural connection on its tangent bundle $T M$, the so called Levi-Civita connection. It is natural in the sense that it is the unique connection that is compatible with the metric structure and symmetric.

11.1 Definition. Compatability

An affine connection ∇ on a (pseudo-)Riemannian manifold (M, g) is called compatible with a (pseudo-)metric $g \in \mathcal{T}_{2}^{0}(M)$, if

$$
\nabla_{X} g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

for all $X, Y, Z \in \mathcal{T}_{0}^{1}(M)$. Recall that for an affine connection we put $\nabla_{X} f:=L_{X} f=(\mathrm{d} f \mid X)$. \diamond Note that in general a connection ∇ need not be compatible with a given metric g, since when taking the derivative of the function $g(Y, Z)$ also g itself is differentiated.
11.2 Lemma. Let ∇ be an affine conncetion on a (pseudo-)Riemannian manifold (M, g). Then ∇ is compatible with g if and only if $\nabla g \equiv 0$.

Proof. According to proposition 10.17 (ii) we have that

$$
\nabla_{X} g(Y, Z)-g\left(\nabla_{X} Y, Z\right)-g\left(Y, \nabla_{X} Z\right)=\left(\nabla_{X} g\right)(Y, Z)
$$

11.3 Remark. If ∇ is compatible with g, then it also follows that
(a) For any curve u and any vector fields X, Y along u

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g(X, Y)=g\left(D_{t} X, Y\right)+g\left(X, D_{t} Y\right)
$$

(b) If X, Y are parellel vector fields along a curve u, then $g(X, Y)$ is constant along u.
(c) Along any curve u, the parallel transport map $T_{t, t_{0}}: T_{u\left(t_{0}\right)} M \rightarrow T_{u(t)} M$ is an isometry.

Actually it is not difficult to see that the validity of either (a), or (b), or (c) in turn implies that ∇ is compatible with g.
11.4 Remark. As a consequence of remark 11.3 (b), geodesics with respect to a affine connection ∇ that is compatible with a metric g are constant speed curves. That means that $\|\dot{u}(t)\|^{2}:=g(\dot{u}(t), \dot{u}(t))(u(t))$ is independent of t. Thus, on a compact manifold without boundary the corresponding geodesic flow exists globally.

11.5 Definition. Symmetry and torsion

Let ∇ be an affine conncetion on a manifold M. The torsion map

$$
\tau: \mathcal{T}_{0}^{1}(M) \times \mathcal{T}_{0}^{1}(M) \rightarrow \mathcal{T}_{0}^{1}(M), \quad \tau(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

defines (by lemma 10.8 and a simple computation) a (1, 2)-tensor field on M, the torsion tensor of ∇. The connection ∇ is called symmetric or torsion free if $\tau \equiv 0$, i.e. if

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y]
$$

for all vector fields X, Y.
11.6 Remark. In local coordinates the symmetry condition reads

$$
\begin{aligned}
\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)^{i} & =\left(\mathrm{d} Y^{i} \mid X\right)+X^{l} Y^{k} \Gamma_{l k}^{i}-\left(\mathrm{d} X^{i} \mid Y\right)-Y^{l} X^{k} \Gamma_{l k}^{i}-\left(\left(\mathrm{d} Y^{i} \mid X\right)-\left(\mathrm{d} X^{i} \mid Y\right)\right) \\
& =X^{l} Y^{k}\left(\Gamma_{l k}^{i}-\Gamma_{k l}^{i}\right) \stackrel{!}{=} 0
\end{aligned}
$$

Thus, an affine connection is symmetric if and only if its Christoffel symbols with respect to one (and thus to any) coordinate basis are symmetric in the lower indices.

11.7 Theorem. Fundamental lemma of Riemannian geometry

Let (M, g) be a (pseudo-)Riemannian manifold. There exists a unique affine connection ∇ on M that is compatible with g and symmetric.
This connection is called the Riemannian connection or the Levi-Civita connection of g. It satisfies the Koszul formula

$$
\begin{align*}
g\left(\nabla_{X} Y, Z\right)= & \frac{1}{2} \\
(& (\mathrm{d} g(Y, Z) \mid X)+(\mathrm{d} g(Z, X) \mid Y)-(\mathrm{d} g(X, Y) \mid Z) \tag{11.1}\\
& -g(Y,[X, Z])-g(Z,[Y, X])+g(X,[Z, Y]))
\end{align*}
$$

and its Christoffel symbols with respect to a local coordinate frame are

$$
\Gamma_{i j}^{l}=\frac{1}{2} g^{l k}\left(g_{j k, i}+g_{k i, j}-g_{i j, k}\right) .
$$

Proof. The strategy of the proof is as follows. One first assumes that an affine connection with the desired properties exists and derives the Koszul formula. From this we can conclude that if such a connection exists, then it is unique. Finally we show that 11.1) actually defines a connection with the desired properties, which proves existence.
Assume that ∇ is an affine connection that is compatible with g and symmetric. Then for $X, Y, Z \in \mathcal{T}_{0}^{1}(M)$ three versions of the compatibility condition are

$$
\begin{aligned}
(\mathrm{d} g(Y, Z) \mid X) & =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \\
(\mathrm{d} g(Z, X) \mid Y) & =g\left(\nabla_{Y} Z, X\right)+g\left(Z, \nabla_{Y} X\right) \\
(\mathrm{d} g(X, Y) \mid Z) & =g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right),
\end{aligned}
$$

where we permuted X, Y, Z cyclically. Applying the symmetry condition on the last term in each line this becomes

$$
\begin{aligned}
(\mathrm{d} g(Y, Z) \mid X) & =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{Z} X\right)+g(Y,[X, Z]) \\
(\mathrm{d} g(Z, X) \mid Y) & =g\left(\nabla_{Y} Z, X\right)+g\left(Z, \nabla_{X} Y\right)+g(Z,[Y, X]) \\
(\mathrm{d} g(X, Y) \mid Z) & =g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Y} Z\right)+g(X,[Z, Y]) .
\end{aligned}
$$

Adding the first two lines and subtracting the last one yields

$$
\begin{aligned}
(\mathrm{d} g(Y, Z) \mid X) & +(\mathrm{d} g(Z, X) \mid Y)-(\mathrm{d} g(X, Y) \mid Z) \\
& =2 g\left(\nabla_{X} Y, Z\right)+g(Y,[X, Z])+g(Z,[Y, X])-g(X,[Z, Y])
\end{aligned}
$$

where we used also symmtry of g. Solving for $g\left(\nabla_{X} Y, Z\right)$, this yields the Koszul formula 11.1). Since the right hand side of (11.1) does not depend on ∇, this proves that for any two symmetric connections ∇ and $\tilde{\nabla}$ that are compatible with g we have

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\tilde{\nabla}_{X} Y, Z\right) \quad \text { for all } X, Y, Z \in \mathcal{T}_{0}^{1}(M)
$$

As a (pseudo-)metric, g is non-degenerate. Thus, $\nabla_{X} Y=\tilde{\nabla}_{X} Y$ for all $X, Y \in \mathcal{T}_{0}^{1}(M)$, which proves uniqueness of ∇.
Existence is now proved by using the Koszul formula as a definition of ∇. Since we already have uniqueness, it suffices to construct a connection with the desired properties within local coordinate charts. Replacing X, Y, Z in 11.1) by coordinate vector fields we find that

$$
g\left(\nabla_{\partial_{i}} \partial_{j}, \partial_{k}\right)=\frac{1}{2}\left(\left(\mathrm{~d} g\left(\partial_{j}, \partial_{k}\right) \mid \partial_{i}\right)+\left(\mathrm{d} g\left(\partial_{k}, \partial_{i}\right) \mid \partial_{j}\right)-\left(\mathrm{d} g\left(\partial_{i}, \partial_{j}\right) \mid \partial_{k}\right)\right) .
$$

Recalling the definitions

$$
g_{i j}:=g\left(\partial_{i}, \partial_{j}\right) \quad \text { and } \quad \nabla_{\partial_{i}} \partial_{j}=: \Gamma_{i j}^{l} \partial_{l},
$$

we obtain

$$
\begin{equation*}
\Gamma_{i j}^{l} g_{l k}=\frac{1}{2}\left(g_{j k, i}+g_{k i, j}-g_{i j, k}\right) \quad \text { and hence } \quad \Gamma_{i j}^{l}=\frac{1}{2} g^{l k}\left(g_{j k, i}+g_{k i, j}-g_{i j, k}\right) . \tag{11.2}
\end{equation*}
$$

It remains to show that these Christoffel symbols really define a connection with the desired properties. Symmetry in the lower indices, and thus according to remark 11.6 also symmetry of the connection, is evident by the symmetry of g, i.e. $g_{i j}=g_{j i}$. To show also compatibility with g, i.e. $\nabla g=0$, we use again lemma 10.19:

$$
g_{i j ; k}=g_{i j, k}-\Gamma_{k i}^{l} g_{l j}-\Gamma_{k j}^{l} g_{i l} .
$$

On the other hand, using (11.2) twice, we obtain

$$
\Gamma_{k i}^{l} g_{l j}+\Gamma_{k j}^{l} g_{i l}=\frac{1}{2}\left(g_{j i, k}+g_{j k, i}-g_{i k, j}+g_{j i, k}+g_{k i, j}-g_{k j, i}\right)=g_{i j, k}
$$

and thus $g_{i j ; k}=0$.

11.8 Proposition. Naturality of the Riemannian connection

Let $\Phi: M \rightarrow \tilde{M}$ be an isometry of (pseudo-)Riemannian manifolds (M, g) and (\tilde{M}, \tilde{g}).
(a) For all $X, Y \in \mathcal{T}_{0}^{1}(M)$ it holds that

$$
\Phi_{*}\left(\nabla_{X} Y\right)=\tilde{\nabla}_{\Phi_{*} X}\left(\Phi_{*} Y\right) .
$$

(b) For any smooth curve $u: I \rightarrow M$ and vector field $Y \in \mathcal{T}_{0}^{1}(u)$ along u

$$
\Phi_{*}\left(D_{t} Y\right)=\tilde{D}_{t}\left(\Phi_{*} Y\right),
$$

where $\Phi_{*} Y: I \rightarrow T \tilde{M}$ is defined as $\Phi_{*} Y:=D \Phi \circ Y$.
(c) Let $u: I \rightarrow M$ be a geodesic on M, then $\tilde{u}:=\Phi \circ u$ is a geodesic on \tilde{M}.

Proof. Define the pull-back connection

$$
\bar{\nabla}: \mathcal{T}_{0}^{1}(M) \times \Gamma(T M) \rightarrow \Gamma(T M), \quad \bar{\nabla}_{X} Y:=\Phi^{*}\left(\tilde{\nabla}_{\Phi_{*} X}\left(\Phi_{*} Y\right)\right)
$$

One now checks easily that $\bar{\nabla}$ defines a connection on $T M$. It is compatible with g,

$$
\begin{aligned}
\bar{\nabla}_{X} g(Y, Z)=\mathrm{d}_{X} g(Y, Z) & =\mathrm{d}_{X}\left(\Phi^{*} \tilde{g}\right)(Y, Z)=\Phi^{*} \mathrm{~d}_{\Phi_{*} X} \tilde{g}\left(\Phi_{*} Y, \Phi_{*} Z\right) \\
& =\Phi^{*} \tilde{g}\left(\tilde{\nabla}_{\Phi_{*} X} \Phi_{*} Y, \Phi_{*} Z\right)+\Phi^{*} \tilde{g}\left(\Phi_{*} Y, \tilde{\nabla}_{\Phi_{*} X} \Phi_{*} Z\right) \\
& =g\left(\Phi^{*} \tilde{\nabla}_{\Phi_{*} X} \Phi_{*} Y, Z\right)+g\left(Y, \Phi^{*} \tilde{\nabla}_{\Phi_{*} X} \Phi_{*} Z\right) \\
& =g\left(\bar{\nabla}_{X} Y, Z\right)+g\left(Y, \bar{\nabla}_{X} Z\right),
\end{aligned}
$$

and, by a similar computation, also symmetric. Hence, $\bar{\nabla}=\nabla$. For (b) proceed analogously using the characterization of D_{t} from proposition 10.23 and (a). Finally, (c) follows from

$$
\tilde{D}_{t} \dot{\tilde{u}}=\tilde{D}_{t}(D(\Phi \circ u) \circ e)=\tilde{D}_{t}(D \Phi \circ D u \circ e)=\tilde{D}_{t}\left(\Phi_{*} \dot{u}\right)=\Phi_{*}\left(D_{t} \dot{u}\right)=0 .
$$

11.9 Proposition. Naturality of the exponential map

Let $\Phi: M \rightarrow \tilde{M}$ be an isometry of (pseudo-)Riemannian manifolds (M, g) and (\tilde{M}, \tilde{g}) and denote by exp and $\widetilde{\exp }$ the exponential maps with respect to the corresponding Riemannian connections. Then

$$
\Phi \circ \exp _{x}=\widetilde{\exp }_{\Phi(x)} \circ \Phi_{*} \mid \mathcal{E}_{x}
$$

Proof. Homework assignment.

11.10 Definition. Geodesic balls and spheres

Let (M, g) be a Riemannian manifold. For $\varepsilon>0$ and $x \in M$ let $B_{\varepsilon}(0):=\left\{v \in T_{x} M \mid g_{x}(v, v)<\varepsilon^{2}\right\}$ be the ε-ball around zero in $T_{x} M$. For ε small enough $B_{\varepsilon}(0) \subset \mathcal{V}_{x}$ and then $\exp _{x}\left(B_{\varepsilon}(0)\right) \subset M$ is called a geodesic ball around x with radius ε. If $\partial B_{\varepsilon}(0):=\left\{v \in T_{x} M \mid g_{x}(v, v)=\varepsilon^{2}\right\}$ is contained in \mathcal{V}_{x}, then $\exp _{x}\left(\partial B_{\varepsilon}(0)\right) \subset M$ is called a geodesic sphere around x with radius ε.

11.11 Definition. Riemannian normal coordinates

Let $\left(w_{1}, \ldots, w_{n}\right)$ be an orthonormal basis of $T_{x} M$ with respect to a (pseudo-)Riemannian metric $g \in \mathcal{T}_{2}^{0}(M)$. For the induced isomorphism with \mathbb{R}^{n} we write

$$
W: \mathbb{R}^{n} \rightarrow T_{x} M, \quad\left(q^{1}, \ldots, q^{n}\right) \mapsto q^{j} w_{j}
$$

Then on any normal neighbourhood U of x one can define (Riemannian) normal coordinates centred at x by

$$
\varphi: U \rightarrow \mathbb{R}^{n}, \quad \varphi:=W^{-1} \circ \exp _{x}^{-1} .
$$

11.12 Proposition. Properties of normal coordinates

Let (M, g) be a (pseudo-)Riemannian manifold and let (U, φ) be normal coordinates centred at $x \in M$. Then
(a) $\varphi(x)=(0, \ldots, 0)$.
(b) $g_{i j}(x)=\delta_{i j}$.
(c) $\Gamma_{i j}^{k}(x)=0$ for all $i, j, k=1, \ldots, n$.
(d) For $v=v^{j} \partial_{q_{j}} \in T_{x} M$ the coordinate representation of the geodesic $\gamma_{x, v}$ has the simple form

$$
\left(\varphi \circ \gamma_{x, v}\right)(t)=\left(t v^{1}, \ldots, t v^{n}\right)
$$

as long as $\gamma_{x, v}$ stays in U.
Proof. (a) is obvious, since $\exp _{x}^{-1}(x)=0$. For (b) note that $\partial_{q_{i}}(0)=w_{i}$ and thus $g_{i j}(0):=$ $g\left(\partial_{q_{i}}, \partial_{q_{j}}\right)(0)=\left.g\right|_{T_{x} M}\left(w_{i}, w_{j}\right)=\delta_{i j}$, since $\left(w_{1}, \ldots, w_{n}\right)$ is, by definition of normal coordinates, an orthonormal basis of $T_{x} M$. For (d) note that $\gamma_{x, v}(t)=\exp _{x}(t v)$ and thus $u(t):=\left(\varphi \circ \gamma_{x, v}\right)(t)=$ $W^{-1}(t v)=\left(t v^{1}, \ldots, t v^{n}\right)$. Since $\ddot{u}^{k}(0)=0$, the geodesic equation 10.5) implies that $v^{i} v^{j} \Gamma_{i j}^{k}(x)=$ 0 for all $i, j, k=1, \ldots, n$ and $v \in T_{x} M$. Thus also $\Gamma_{i j}^{k}(x)=0$ for all $i, j, k=1, \ldots, n$.

Be warned that (b) and (c) only hold at the point x and that there is, in general, no coordinate system such that $g_{i j}=\delta_{i j}$ or $\Gamma_{i j}^{k}=0$ holds in an open neighbourhood of x. Also (d) holds in general only for geodesics passing through x, so called radial goedesics. The coordinate representation of other geodesics passing through U need not be a straight line.

German nomenclature

normal coordinates $=$ Normalkoordinaten geodesic ball $=$ geodätischer Ball torsion $=$ Torsion

12 Curvature

Let $\pi: E \rightarrow M$ be a vector bundle with connection ∇. Given a vector $s_{0} \in E_{x}$ one can ask whether there exists a section $S \in \Gamma\left(\left.E\right|_{U}\right)$ defined in a neighbourhood $U \subset M$ of the point x such that $S(x)=s_{0}$ and such that S is parallel, i.e. $\nabla S=0$. We already know that for one-dimensional manifolds (i.e. curves) the answer is yes and that S is indeed unique and given by the parallel transport. On vector bundles over higher dimensional manifolds this is only true if the curvature of the connection vanishes. Hence, curvature can be seen as an obstruction to the existence of parallel sections.
Let us briefly motivate the definition of curvature given below. Assume the above setting where M is a two dimensional manifold. Choose a chart φ centred at x, i.e. such that $\varphi(x)=0$. To construct a parallel section S with $S(x)=s_{0}$ we proceed in the following way: We first parallel transport s_{0} along the q_{1}-coordinate line going through x and then, starting on each point on this coordinate line, parallel translate the resulting vector along the corresponding q_{2}-coordinate line. By smooth dependence on initial data this indeed yields a local section $S \in \Gamma\left(\left.E\right|_{U}\right)$ with $S(x)=s_{0}$. By construction, it holds that $\nabla_{\partial_{q_{1}}} S=0$ on the q_{1}-coordinate line through x and $\nabla_{\partial_{q_{2}}} S=0$ on all of U. While this section S is the only candidate for a parallel section on U with $S(x)=s_{0}$, in general it is not true that $\nabla_{\partial_{q_{1}}} S=0$ on all of U. If we could show that $\nabla_{\partial_{q_{1}}} S$ is constant along the q_{2}-coordinate lines, i.e. that

$$
\nabla_{\partial_{q_{2}}} \nabla_{\partial_{q_{1}}} S=0,
$$

then $\nabla_{\partial_{q_{1}}} S=0$ on the q_{1}-coordinate line through x would imply that $\nabla_{\partial_{q_{1}}} S=0$ on all of U. Since $\nabla_{\partial_{q_{1}}} \nabla_{\partial_{q_{2}}} S=0$, the condition for the local existence of parallel sections thus reads

$$
\nabla_{\partial_{q_{2}}} \nabla_{\partial_{q_{1}}} S=\nabla_{\partial_{q_{1}}} \nabla_{\partial_{q_{2}}} S .
$$

12.1 Definition. The curvature map

Let $\pi: E \rightarrow M$ be a vector bundle with connection ∇. The map
$\mathcal{R}: \mathcal{T}_{0}^{1}(M) \times \mathcal{T}_{0}^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, Y, S) \mapsto \mathcal{R}(X, Y, S):=\nabla_{X} \nabla_{Y} S-\nabla_{Y} \nabla_{X} S-\nabla_{[X, Y]} S$
is called the curvature map. It is obviously skew-symmetric in the first two arguments, $\mathcal{R}(Y, X, S)=-\mathcal{R}(X, Y, S)$.

The next proposition shows, that the map R is indeed tensorial and thus defines, given two tangent vectors $X(x)$ and $Y(x)$ at $x \in M$, an endomorphism of the fibre E_{x}.
12.2 Remark. This endomorphism can be thought of being the parallel transport map along an infinitesimal curve that is obtained by first going in direction Y, then in direction X, then back in direction $-Y$, then $-X$, and finally, to close the loop, in direction $[X, Y]$. Let us briefly discuss this view on curvature on a formal level:
First denote the parallel transport map along the integral curves of a vector field X for time t by $e^{t \nabla x}$, i.e.

$$
\mathrm{e}^{t \nabla_{x}}: \Gamma(E) \rightarrow \Gamma(E), \quad S \mapsto\left(\mathrm{e}^{-t \nabla_{x}} S\right)(x):=T_{t, 0} S\left(\Phi_{-t}^{X}(x)\right)
$$

12 Curvature

where $T_{t, 0}:\left.\left.E\right|_{\Phi_{-t}^{X}(x)} \rightarrow E\right|_{x}$ is the parallel transport map along the integral curve of X that passes through x at time t and through $\Phi_{-t}^{X}(x)$ at time zero. The notation as the exponential of a differential operator is motivated by the fact that the "time-dependent" section $S(t):=\mathrm{e}^{-t \nabla_{x}} S$ satisfies the differential equation $\frac{\mathrm{d}}{\mathrm{d} t} S(t)=-\nabla_{X} S(t)$. With this notation the parallel transport map around the (almost) closed loop described above is given by the map

$$
H(t):=\mathrm{e}^{-t^{2} \nabla_{[X, Y]}} \mathrm{e}^{t \nabla_{X}} \mathrm{e}^{t \nabla_{Y}} \mathrm{e}^{-t \nabla_{X}} \mathrm{e}^{-t \nabla_{Y}} .
$$

Clearly, $\lim _{t \rightarrow 0} H(t)=$ Id. However, if we expand $H(t)$ in powers of t by (formally) using the Baker-Campbell-Hausdorff formula repeatedly, e.g.
we find that

$$
H(t)=\mathrm{e}^{t^{2}\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right)+\mathcal{O}\left(t^{3}\right)}=\operatorname{Id}+t^{2}\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right)+\mathcal{O}\left(t^{3}\right)
$$

and thus

$$
\lim _{t \rightarrow 0} \frac{H(t) S-S}{t^{2}}=\mathcal{R}(X, Y, S) .
$$

12.3 Proposition. The curvature map is tensorial

The curvature map \mathcal{R} is induced by a tensor field $R \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes E^{*} \otimes E\right)$, i.e. for all $X, Y \in \mathcal{T}_{0}^{1}(M), S \in \Gamma(E)$, and $T \in \Gamma\left(E^{*}\right)$

$$
(\mathcal{R}(X, Y, S) \mid T)(x)=(R(x) \mid X(x), Y(x), S(x), T(x)) .
$$

R is called the curvature tensor.
Proof. According to lemma 10.8 we need to show $C^{\infty}(M)$-linearity of

$$
(X, Y, S, T) \mapsto(\mathcal{R}(X, Y, S) \mid T)=\left(\nabla_{X} \nabla_{Y} S-\nabla_{Y} \nabla_{X} S-\nabla_{[X, Y]} S \mid T\right)
$$

in all arguments. For T this is obvious. For X (and completely analogous for Y) we find

$$
\begin{aligned}
\mathcal{R}(f X, Y, S) & =\nabla_{f X} \nabla_{Y} S-\nabla_{Y} \nabla_{f X} S-\nabla_{[f X, Y]} S \\
& =f \nabla_{X} \nabla_{Y} S-\nabla_{Y} f \nabla_{X} S-\nabla_{f[X, Y]-(\mathrm{d} f \mid Y) X} S \\
& =f \nabla_{X} \nabla_{Y} S-f \nabla_{Y} \nabla_{X} S-(\mathrm{d} f \mid Y) \nabla_{X} S-f \nabla_{[X, Y]} S+(\mathrm{d} f \mid Y) \nabla_{X} S \\
& =f\left(\nabla_{X} \nabla_{Y} S-\nabla_{Y} \nabla_{X} S-\nabla_{[X, Y]} S\right)=f \mathcal{R}(X, Y, S),
\end{aligned}
$$

and for S

$$
\begin{aligned}
\mathcal{R}(X, Y, f S)= & \nabla_{X} \nabla_{Y} f S-\nabla_{Y} \nabla_{X} f S-\nabla_{[X, Y]} f S \\
= & \nabla_{X} f \nabla_{Y} S+\nabla_{X}(\mathrm{~d} f \mid Y) S-\nabla_{Y} f \nabla_{X} S-\nabla_{Y}(\mathrm{~d} f \mid X) S-f \nabla_{[X, Y]} S-(\mathrm{d} f \mid[X, Y]) S \\
= & f \mathcal{R}(X, Y, S)+(\mathrm{d} f \mid X) \nabla_{Y} S+(\mathrm{d} f \mid Y) \nabla_{X} S+(\mathrm{d}(\mathrm{~d} f \mid Y) \mid X) S \\
& -(\mathrm{d} f \mid Y) \nabla_{X} S-(\mathrm{d} f \mid X) \nabla_{Y} S-(\mathrm{d}(\mathrm{~d} f \mid X) \mid Y) S-(\mathrm{d} f \mid[X, Y]) S \\
= & f \mathcal{R}(X, Y, S)+\left(L_{X} L_{Y} f\right) S-\left(L_{Y} L_{X} f\right) S-\left(\left(L_{X} L_{Y}-L_{Y} L_{x}\right) f\right) S \\
= & f \mathcal{R}(X, Y, S) .
\end{aligned}
$$

12.4 Lemma. Coordinate representation of the curvature tensor

Let $\left(S_{1}, \ldots, S_{k}\right)$ be a local frame of E and $\left(\partial_{q_{1}}, \ldots, \partial_{q_{n}}\right)$ a coordinate frame on M. Then

$$
R=R_{i j \alpha}^{\beta} \mathrm{d} q^{i} \otimes \mathrm{~d} q^{j} \otimes S^{\alpha} \otimes S_{\beta}
$$

with

$$
R_{i j \alpha}^{\beta}=\Gamma_{j \alpha, i}^{\beta}-\Gamma_{i \alpha, j}^{\beta}+\Gamma_{j \alpha}^{\gamma} \Gamma_{i \gamma}^{\beta}-\Gamma_{i \alpha}^{\gamma} \Gamma_{j \gamma}^{\beta} .
$$

Proof. Since $\left[\partial_{i}, \partial_{j}\right]=0$, we find that

$$
\begin{aligned}
\mathcal{R}\left(\partial_{i}, \partial_{j}, S_{\alpha}\right) & =\nabla_{\partial_{i}} \nabla_{\partial_{j}} S_{\alpha}-\nabla_{\partial_{j}} \nabla_{\partial_{i}} S_{\alpha}=\nabla_{\partial_{i}} \Gamma_{j \alpha}^{\beta} S_{\beta}-\nabla_{\partial_{j}} \Gamma_{i \alpha}^{\beta} S_{\beta} \\
& =\Gamma_{j \alpha, i}^{\beta} S_{\beta}+\Gamma_{j \alpha}^{\beta} \Gamma_{i \beta}^{\gamma} S_{\gamma}-\Gamma_{i \alpha, j}^{\beta} S_{\beta}-\Gamma_{i \alpha}^{\beta} \Gamma_{j \beta}^{\gamma} S_{\gamma} \\
& =\left(\Gamma_{j \alpha, i}^{\beta}-\Gamma_{i \alpha, j}^{\beta}+\Gamma_{j \alpha}^{\gamma} \Gamma_{i \gamma}^{\beta}-\Gamma_{i \alpha}^{\gamma} \Gamma_{j \gamma}^{\beta}\right) S_{\beta} .
\end{aligned}
$$

We now specialise to affine connections again.

12.5 Proposition. The algebraic Bianchi identity

Let ∇ be a symmetric connection on $T M$. Then

$$
\mathcal{R}(X, Y, Z)+\mathcal{R}(Y, Z, X)+\mathcal{R}(Z, X, Y)=0 .
$$

Proof.

$$
\begin{aligned}
\nabla_{X} \nabla_{Y} Z & -\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z+\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X-\nabla_{[Y, Z]} X+\nabla_{Z} \nabla_{X} Y-\nabla_{X} \nabla_{Z} Y-\nabla_{[Z, X]} Y \\
= & \nabla_{X}\left(\nabla_{Y} Z-\nabla_{Z} Y\right)+\nabla_{Y}\left(\nabla_{Z} X-\nabla_{X} Z\right)+\nabla_{Z}\left(\nabla_{X} Y-\nabla_{Y} X\right) \\
& -\nabla_{[Y, Z]} X-\nabla_{[Z, X]} Y-\nabla_{[X, Y]} Z \\
= & \nabla_{X}[Y, Z]-\nabla_{[Y, Z]} X+\nabla_{Y}[Z, X]-\nabla_{[Z, X]} Y+\nabla_{Z}[X, Y]-\nabla_{[X, Y]} Z \\
= & {[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0, }
\end{aligned}
$$

where we used symmetry of ∇ twice and the Jacobi identity.

12.6 Proposition. Symmetries of the Riemannian curvature tensor

Let (M, g) be a (pseudo-)Riemannian manifold. Then the curvature tensor R of the Riemannian connection is a $(1,3)$-tensor field and we define the $(0,4)$-tensor field

$$
\operatorname{Rm}(X, Y, Z, W):=g(\mathcal{R}(X, Y, Z), W)
$$

and call it the Riemannian curvature tensor. It has the following symmetries:
(a) $\operatorname{Rm}(X, Y, Z, W)=-\operatorname{Rm}(Y, X, Z, W)$
(b) $\operatorname{Rm}(X, Y, Z, W)=-\operatorname{Rm}(X, Y, W, Z)$
(c) $\operatorname{Rm}(X, Y, Z, W)=\operatorname{Rm}(Z, W, X, Y)$

Proof. (a) is just the skew-symmetry of \mathcal{R} in its first arguments. For (b) we will show that $\operatorname{Rm}(X, Y, V, V)=0$ for all vector fields, which then implies that

$$
0=\operatorname{Rm}(X, Y, Z+W, Z+W)=\operatorname{Rm}(X, Y, Z, W)+\operatorname{Rm}(X, Y, W, Z) .
$$

Using compatibility with the metric and symmetry of the latter we have that

$$
\begin{aligned}
L_{X} L_{Y} g(V, V) & =L_{X}\left(g\left(\nabla_{Y} V, V\right)+g\left(V, \nabla_{Y} V\right)\right)=2 g\left(\nabla_{X} \nabla_{Y} V, V\right)+2 g\left(\nabla_{Y} V, \nabla_{X} V\right) \\
L_{Y} L_{X} g(V, V) & =L_{Y}\left(g\left(\nabla_{X} V, V\right)+g\left(V, \nabla_{X} V\right)\right)=2 g\left(\nabla_{Y} \nabla_{X} V, V\right)+2 g\left(\nabla_{X} V, \nabla_{Y} V\right) \\
L_{[X, Y]} g(V, V) & =2 g\left(\nabla_{[X, Y]} V, V\right) .
\end{aligned}
$$

12 Curvature

Subtracting the second and third equation from the first and dividing by 2 yields

$$
0=g\left(\nabla_{X} \nabla_{Y} V, V\right)-g\left(\nabla_{Y} \nabla_{X} V, V\right)-g\left(\nabla_{[X, Y]} V, V\right)=\operatorname{Rm}(X, Y, V, V) .
$$

To prove (c), we write out four times the algebraic Bianchi identity,

$$
\begin{aligned}
\operatorname{Rm}(Y, Z, X, W)+\operatorname{Rm}(Z, X, Y, W)+\operatorname{Rm}(X, Y, Z, W) & =0 \\
-\operatorname{Rm}(W, X, Y, Z)-\operatorname{Rm}(Y, W, X, Z)-\operatorname{Rm}(X, Y, W, Z) & =0 \\
-\operatorname{Rm}(X, Z, W, Y)-\operatorname{Rm}(W, X, Z, Y)-\operatorname{Rm}(Z, W, X, Y) & =0 \\
\operatorname{Rm}(Y, Z, W, X)+\operatorname{Rm}(W, Y, Z, X)+\operatorname{Rm}(Z, W, Y, X) & =0 .
\end{aligned}
$$

Now add up the four lines. Applying (b) four times makes all the terms in the first two columns cancel. Then applying (a) and (b) in the last column yields $2 \operatorname{Rm}(X, Y, Z, W)-2 \operatorname{Rm}(Z, W, X, Y)=$ 0 , which is equivalent to (c).
12.7 Remark. In components with respect to a basis frame Rm is obtained from R by

$$
\mathrm{Rm}_{i j k l}=R_{i j k}{ }^{m} g_{m l}
$$

Note that it is sometimes useful to keep track of the order of all indices, not just for lower and upper indices independently. Then it is clear from the notation which index has been raised or lowered using the metric. The symmetries of Rm now read

$$
\begin{aligned}
\mathrm{Rm}_{i j k l} & =-\mathrm{Rm}_{j i k l} \\
\mathrm{Rm}_{i j k l} & =-\mathrm{Rm}_{i j l k} \\
\operatorname{Rm}_{i j k l} & =\operatorname{Rm}_{k l i j} \\
0 & =\operatorname{Rm}_{i j k l}+\operatorname{Rm}_{k i j l}+\operatorname{Rm}_{j k i l},
\end{aligned}
$$

where the last line is the algebraic Bianchi identity.

12.8 Proposition. Invariance of the curvature tensor under isometries

The Riemannian curvature tensor is invariant under (local) isometries. More precisely, if Φ : $(M, g) \rightarrow(\tilde{M}, \tilde{g})$ is a (local) isometry, then

$$
\Phi^{*} \widetilde{\mathrm{Rm}}=\mathrm{Rm}
$$

and

$$
\widetilde{\mathcal{R}}\left(\Phi_{*} X, \Phi_{*} Y, \Phi_{*} Z\right)=\Phi_{*} \mathcal{R}(X, Y, Z)
$$

Proof. With proposition 11.8 we have

$$
\begin{aligned}
\widetilde{\mathcal{R}}\left(\Phi_{*} X, \Phi_{*} Y, \Phi_{*} Z\right) & =\left(\widetilde{\nabla}_{\Phi_{*} X} \widetilde{\nabla}_{\Phi_{*} Y}-\widetilde{\nabla}_{\Phi_{*} Y} \widetilde{\nabla}_{\Phi_{*} X}-\widetilde{\nabla}_{\Phi_{*}[X, Y]}\right) \Phi_{*} Z \\
& =\Phi_{*}\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z \\
& =\Phi_{*} \mathcal{R}(X, Y, Z),
\end{aligned}
$$

and thus also

$$
\begin{aligned}
\widetilde{\operatorname{Rm}}\left(\Phi_{*} X, \Phi_{*} Y, \Phi_{*} Z, \Phi_{*} W\right) & =\tilde{g}\left(\widetilde{\mathcal{R}}\left(\Phi_{*} X, \Phi_{*} Y, \Phi_{*} Z\right), \Phi_{*} W\right)=\tilde{g}\left(\Phi_{*} \mathcal{R}(X, Y, Z), \Phi_{*} W\right) \\
& =\Phi_{*} g(\mathcal{R}(X, Y, Z), W)=\Phi_{*} \operatorname{Rm}(X, Y, Z, W) .
\end{aligned}
$$

12.9 Definition. Flat manifolds

A Riemannian manifold is called flat, if it is locally isometric to euclidean space.
12.10 Theorem. A Riemannian manifold is flat if and only if its curvature tensor vanishes.

Proof. Proposition 12.8 implies that the curvature tensor of a flat manifold vanishes. For the converse implication one can show that with respect to normal coordinates the metric g is euclidean if the curvature tensor vanishes (see e.g. chapter 7 in John Lee, Riemannian manifolds: An introduction).

12.11 Proposition. The differential Bianchi identity

The total covariant derivative of the Riemannian curvature tensor satisfies

$$
\nabla \operatorname{Rm}(X, Y, Z, V, W)+\nabla \operatorname{Rm}(X, Y, V, W, Z)+\nabla \operatorname{Rm}(X, Y, W, Z, V)=0
$$

and in components

$$
\mathrm{Rm}_{i j k l ; m}+\mathrm{Rm}_{i j m k ; l}+\mathrm{Rm}_{i j l m ; k}=0
$$

Proof. By proposition 12.6 the claim is equivalent to

$$
\nabla \operatorname{Rm}(Z, V, X, Y, W)+\nabla \operatorname{Rm}(V, W, X, Y, Z)+\nabla \operatorname{Rm}(W, Z, X, Y, V)=0
$$

By multi-linearity it suffices to prove the identity when X, Y, Z, V, W are elements of a coordinate frame. Let $\left(\partial_{1}, \ldots, \partial_{n}\right)$ be the coordinate frame of normal coordinates centered at $x \in M$. Then $\left[\partial_{i}, \partial_{j}\right]=0$, and, by proposition $11.12(\mathrm{c}),\left(\nabla_{\partial_{i}} \partial_{j}\right)(x)=0$. Hence, for X, Y, Z, V, W taken from this frame,
$\nabla \operatorname{Rm}(Z, V, X, Y, W)(x)=\nabla_{W} g(\mathcal{R}(Z, V, X), Y)(x)=g\left(\nabla_{W} \nabla_{Z} \nabla_{V} X, Y\right)(x)-g\left(\nabla_{W} \nabla_{V} \nabla_{Z} X, Y\right)(x)$.
Thus, when evaluated at x,

$$
\begin{aligned}
& \nabla \operatorname{Rm}(Z, V, X, Y, W)+\nabla \operatorname{Rm}(V, W, X, Y, Z)+\nabla \operatorname{Rm}(W, Z, X, Y, V)= \\
&= g\left(\nabla_{W} \nabla_{Z} \nabla_{V} X, Y\right)-g\left(\nabla_{W} \nabla_{V} \nabla_{Z} X, Y\right)+g\left(\nabla_{Z} \nabla_{V} \nabla_{W} X, Y\right)-g\left(\nabla_{Z} \nabla_{W} \nabla_{V} X, Y\right) \\
&+g\left(\nabla_{V} \nabla_{W} \nabla_{Z} X, Y\right)-g\left(\nabla_{V} \nabla_{Z} \nabla_{W} X, Y\right) \\
&= g\left(\mathcal{R}\left(W, Z, \nabla_{V} X\right), Y\right)+g\left(\mathcal{R}\left(Z, V, \nabla_{W} X\right), Y\right)+g\left(\mathcal{R}\left(V, W, \nabla_{Z} X\right), Y\right) \\
&= 0
\end{aligned}
$$

since $\nabla_{V} X=\nabla_{W} X=\nabla_{Z} X=0$.
By taking traces of the Riemannian curvature tensor one obtains somewhat simpler objects that still encode parts of the geometric information contained in Rm . Recall that Rm was obtained from the curvature tensor R of the Riemannian connection by lowering the last index using the metric.

12.12 Definition. The Ricci and the scalar curvature

Let R be the curvature tensor of a (pseudo-)Riemannian manifold (M, g). Then the Ricci curvature tensor is the $(0,2)$-tensor obtained by contracting the first and the last argument of R,

$$
\operatorname{Ric}(X, Y):=\operatorname{tr} R(\cdot, X, Y, \cdot)
$$

In local coordinates the definition reads

$$
\operatorname{Ric}_{i j}=R_{k i j}^{k}=g^{k l} \operatorname{Rm}_{k i j l}
$$

The scalar curvature is the metric trace of the Ricci tensor,

$$
S:=\operatorname{tr}_{g} \operatorname{Ric}, \quad \text { i.e. locally } \quad S=g^{i j} \operatorname{Ric}_{i j}
$$

12 Curvature

12.13 Lemma. The Ricci tensor is symmetric, i.e. $\operatorname{Ric}(X, Y)=\operatorname{Ric}(Y, X)$, and can be expressed in the following ways:

$$
\operatorname{Ric}_{i j}=R_{k i j}^{k}=R_{i k j}^{k}=-R_{k i}^{k}=-R_{i k j}^{k} .
$$

Proof. Homework assignment.

12.14 Definition. The divergence operator

Let F be a tensor field on a (pseudo-)Riemannian manifold. The divergence $\operatorname{div} F$ of F with respect to the k th argument is the (metric)trace of ∇F with respect to the k th and the last argument. In particular, for $X \in \mathcal{T}_{0}^{1}(M)$ and $\omega \in \mathcal{T}_{1}^{0}(M)$

$$
\operatorname{div} X=\operatorname{tr} \nabla X=X_{; j}^{j} \quad \text { and } \quad \operatorname{div} \omega=\operatorname{tr}_{g} \nabla \omega=g^{i j} \omega_{i ; j} .
$$

12.15 Proposition. Contracted Bianchi identity

It holds that

$$
\text { div Ric }=\frac{1}{2} \nabla S, \quad \text { i.e. locally } \quad g^{j k} \operatorname{Ric}_{i j ; k}=\frac{1}{2} S_{; i} .
$$

Proof. Recall the differential Bianchi identity

$$
\mathrm{Rm}_{i j k l ; m}+\mathrm{Rm}_{i j m k ; l}+\mathrm{Rm}_{i j l m ; k}=0
$$

Metric contraction of the index pairs i, l and j, k yields the claim.
We end this section with a short introduction to Riemannian geometry of submanifolds.
Let $N \subset M$ be a submanifold of a Riemannian manifold (M, g) and denote by $\psi: N \hookrightarrow M$ the inclusion map. Then $\tilde{g}:=\psi^{*} g$ is a metric on N and turns N into a Riemannian manifold. Sometimes \tilde{g} is called the first fundamental form. In problem 52 of the homework assignments it is shown that the restriction

$$
\tilde{\nabla}: \mathcal{T}_{0}^{1}(N) \times \Gamma(T N) \rightarrow \Gamma(T N), \quad(\tilde{X}, \tilde{Y}) \mapsto \tilde{\nabla}_{\tilde{X}} \tilde{Y}:=P_{N} \nabla_{\tilde{X}} \tilde{Y}
$$

of the Riemannian connection ∇ on $T M$ to $T N$ is indeed the Riemannian connection of (N, \tilde{g}). Here $\tilde{X}, \tilde{Y} \in \Gamma(T N) \subset \Gamma\left(\left.T M\right|_{N}\right)$ and $\nabla_{\tilde{X}} \tilde{Y}$ is well defined by problem 48. Recall that $P_{N} \in$ $\operatorname{End}\left(\left.T M\right|_{N}\right)$ where, for $x \in N, P_{N}(x)$ is the orthogonal (w.r.t. g) projection within $T_{x} M$ onto the tangent space $T_{x} N \subset T_{x} M$. We denote by

$$
T^{\perp} N:=\left\{\left.(x, v) \in T M\right|_{N} \mid x \in N \text { and } v \in T_{x} N^{\perp}\right\}
$$

the normal bundle to N. Note that $\left.T M\right|_{N}=T N \oplus T^{\perp} N$. One thus has the decomposition

$$
\nabla_{\tilde{X}} \tilde{Y}=P_{N} \nabla_{\tilde{X}} \tilde{Y}+P_{N}^{\perp} \nabla_{\tilde{X}} \tilde{Y}=\tilde{\nabla}_{\tilde{X}} \tilde{Y}+I(\tilde{X}, \tilde{Y})
$$

Here

$$
I I: \Gamma(T N) \times \Gamma(T N) \rightarrow \Gamma\left(T^{\perp} N\right), \quad \Pi(\tilde{X}, \tilde{Y}):=P_{N}^{\perp} \nabla_{\tilde{X}} \tilde{Y}
$$

is called the second fundamental form.

12.16 Proposition. The second fundamental form

The second fundamental form $I I$ is a symmetric vector-valued 2 -form, taking values in the normal bundle.

Proof. Symmetry of $I I$ follows form the symmetry of the Riemannian connection and the fact that for two vector fields \tilde{X} and \tilde{Y} that are tangent to N also $[\tilde{X}, \tilde{Y}]$ is tangent to N,

$$
\Pi(\tilde{X}, \tilde{Y})=P_{N}^{\perp} \nabla_{\tilde{X}} \tilde{Y}=P_{N}^{\perp} \nabla_{\tilde{Y}} \tilde{X}-P_{N}^{\perp}[\tilde{X}, \tilde{Y}]=P_{N}^{\perp} \nabla_{\tilde{Y}} \tilde{X}=\Pi(\tilde{Y}, \tilde{X})
$$

Thus I is also $C^{\infty}(N)$-linear in both arguments and hence a vector-valued 2-form.

12.17 Proposition. The Weingarten equation

Let $\tilde{X}, \tilde{Y} \in \Gamma(T N)$ and $V \in \Gamma\left(T^{\perp} N\right)$. Then on N it holds that

$$
g\left(\nabla_{\tilde{X}} V, \tilde{Y}\right)=-g(V, \Pi(\tilde{X}, \tilde{Y}))
$$

Proof. Since $g(V, \tilde{Y})=0$ on N, we find

$$
\begin{aligned}
0 & =L_{\tilde{X}} g(V, \tilde{Y})=g\left(\nabla_{\tilde{X}} V, \tilde{Y}\right)+g\left(V, \nabla_{\tilde{X}} \tilde{Y}\right) \\
& =g\left(\nabla_{\tilde{X}} V, \tilde{Y}\right)+g\left(V, \tilde{\nabla}_{\tilde{X}} \tilde{Y}\right)+g(V, \Pi(\tilde{X}, \tilde{Y})) \\
& =g\left(\nabla_{\tilde{X}} V, \tilde{Y}\right)+g(V, \Pi(\tilde{X}, \tilde{Y}))
\end{aligned}
$$

12.18 Proposition. The Gauß equation

For $\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W} \in \mathcal{T}_{0}^{1}(N)$ it holds that

$$
\operatorname{Rm}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})=\widetilde{\operatorname{Rm}}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})+g(\Pi(\tilde{X}, \tilde{Z}), \Pi(\tilde{Y}, \tilde{W}))-g(\Pi(\tilde{Y}, \tilde{Z}), \Pi(\tilde{X}, \tilde{W}))
$$

and in coordinates adapted to N

$$
\mathrm{Rm}_{i j k l}=\widetilde{\operatorname{Rm}}_{i j k l}+g_{m p} \Pi_{i k}^{m} \Pi_{j l}^{p}-g_{m p} \Pi_{j k}^{m} \Pi_{i l}^{p}
$$

Proof. Using the definition of $I I$ and the Weingarten equation, we find that

$$
\begin{aligned}
& g(\mathcal{R}(\tilde{X}, \tilde{Y}, \tilde{Z}), \tilde{W})= g\left(\nabla_{\tilde{X}} \nabla_{\tilde{Y}} \tilde{Z}, \tilde{W}\right)-g\left(\nabla_{\tilde{Y}} \nabla_{\tilde{X}} \tilde{Z}, \tilde{W}\right)-g\left(\nabla_{[\tilde{X}, \tilde{Y}]} \tilde{Z}, \tilde{W}\right) \\
&= g\left(\nabla_{\tilde{X}}\left(\tilde{\nabla}_{\tilde{Y}} \tilde{Z}+\Pi(\tilde{Y}, \tilde{Z})\right), \tilde{W}\right)-g\left(\nabla_{\tilde{Y}}\left(\tilde{\nabla}_{\tilde{X}} \tilde{Z}+\Pi(\tilde{X}, \tilde{Y})\right), \tilde{W}\right) \\
&-g\left(\tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}, \tilde{W}\right)+\underbrace{g(I([\tilde{X}, \tilde{Y}], \tilde{Z}), \tilde{W})}_{=0} \\
&= g\left(\tilde{\nabla}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \tilde{Z}, \tilde{W}\right)+g\left(\nabla_{\tilde{X}} \Pi(\tilde{Y}, \tilde{Z}), \tilde{W}\right)-g\left(\tilde{\nabla}_{\tilde{Y}} \tilde{\nabla} \tilde{X}_{\tilde{X}} \tilde{Z}, \tilde{W}\right)-g\left(\nabla_{\tilde{Y}} \Pi(\tilde{X}, \tilde{Y}), \tilde{W}\right) \\
&-g(\tilde{\nabla} \\
& {[\tilde{X}, \tilde{Y}] } \\
&= \tilde{Z}(\tilde{\mathcal{R}}(\tilde{X}, \tilde{Y}) \\
&\tilde{Y}, \tilde{Z}), \tilde{W})-g(\Pi(\tilde{Y}, \tilde{Z}), \Pi(\tilde{X}, \tilde{W}))+g(\Pi(\tilde{X}, \tilde{Z}), \Pi(\tilde{Y}, \tilde{W})) .
\end{aligned}
$$

German nomenclature

$$
\text { curvature }=\text { Krümmung } \quad \text { flat manifold }=\text { flache Mannigfaltigkeit }
$$

13 Symplectic forms and Hamiltonian flows

In this section we collect basic definitions and results about Hamiltonian vector fields and flows on symplectic manifolds. These flows play a central role in classical Hamiltonian mechanics, a very elegant formulation of classical mechanics.

13.1 Definition. Symplectic manifolds

A symplectic form on a manifold M is a closed non-degenerate 2 -form ω on M, i.e. $\omega \in \Lambda_{2}(M)$ with $\mathrm{d} \omega=0$. The pair (M, ω) is called a symplectic manifold.
13.2 Remarks. (a) Recall the following result from linear algebra: Let V be an n-dimensional real vector space and ω a skew-symmetric bilinear form with rank $\omega=r$, where the rank of ω is the basis-independent rank of the representing matrix $J_{i j}:=\omega\left(e_{i}, e_{j}\right)$. Then $r=2 m$ for some $m \in \mathbb{N}_{0}$ and there exists a basis in which J has the form

$$
J=\left(\begin{array}{ccc}
0 & \mathrm{id}_{m \times m} & 0 \\
-\mathrm{id}_{m \times m} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in \mathcal{M}(n \times n, \mathbb{R})
$$

Thus, in particular, non-degenerate skew-symmetric bilinear forms exist only on evendimensional vector spaces. And symplectic manifolds must also be even-dimensional.
(b) If ω is exact, then (M, ω) is called exact symplectic.
(c) On $M=T^{*} \mathbb{R}^{n}$ the canonical symplectic form is $\omega_{0}:=\sum_{j=1}^{n} \mathrm{~d} q^{j} \wedge \mathrm{~d} p^{j}$, where $(q, p) \in$ $T^{*} \mathbb{R}^{n} \cong \mathbb{R}^{n} \times \mathbb{R}^{n}$ are cartesian coordinates.

Recall from remark 4.8 that any non-degenerate 2 -form ω induces an isomorphism between $\mathcal{T}_{0}^{1}(M)$ and $\mathcal{T}_{1}^{0}(M)$:

$$
X \in \mathcal{T}_{0}^{1}(M) \mapsto X^{*}=\omega(X, \cdot)=\mathrm{i}_{X} \omega \in \mathcal{T}_{1}^{0}(M)
$$

13.3 Definition. Hamiltonian vector fields

A vector field $X \in \mathcal{T}_{0}^{1}(M)$ on a symplectic manifold (M, ω) is called a Hamiltonian vector field, if $\omega(X, \cdot)$ is an exact 1-form, resp. locally Hamiltonian, if $\omega(X, \cdot)$ is closed.
For $H \in C^{\infty}(M)$ the vector field X_{H} associated through ω with $\mathrm{d} H$, i.e.

$$
\omega\left(X_{H}, \cdot\right)=\mathrm{d} H
$$

is called the Hamiltonian vector field generated by H and H is called the Hamiltonian function.
Note that the map $C^{\infty}(M) \rightarrow \mathcal{T}_{0}^{1}(M), H \mapsto X_{H}$ is \mathbb{R}-linear.
13.4 Example. For $T^{*} \mathbb{R}^{n} \cong \mathbb{R}_{q}^{n} \times \mathbb{R}_{p}^{n}$ and a symplectic form $\omega \in \Lambda_{2}\left(T^{*} \mathbb{R}^{n}\right)$ let $J_{i j}=\omega\left(e_{i}, e_{j}\right)$. For $H \in C^{\infty}\left(T^{*} \mathbb{R}^{n}\right)$ it follows that

$$
\begin{aligned}
\omega\left(X_{H}, Y\right)=\mathrm{d} H(Y) \quad \forall Y \in \mathcal{T}_{0}^{1}\left(T^{*} \mathbb{R}^{n}\right) & \Leftrightarrow X_{H}^{i} J_{i j} Y^{j}=Y^{j} \partial_{j} H \quad \forall Y \in \mathcal{T}_{0}^{1}\left(T^{*} \mathbb{R}^{n}\right) \\
& \Leftrightarrow J_{i j} X_{H}^{i}=\partial_{j} H \quad \forall j=1, \ldots, 2 n \\
& \Leftrightarrow J^{T} X_{H}=\nabla H \\
& \Leftrightarrow X_{H}=\left(J^{T}\right)^{-1} \nabla H
\end{aligned}
$$

If J has the canonical form $J_{0}=\left(\begin{array}{cc}0 & \text { id } \\ -\mathrm{id} & 0\end{array}\right)$, then $\left(J_{0}^{T}\right)^{-1}=J_{0}$ implies for X_{H} the usual Hamiltonian equations of motion,

$$
X_{H}^{j}=\frac{\partial H}{\partial p_{j}} \quad \text { and } \quad X_{H}^{j+n}=-\frac{\partial H}{\partial q_{j}}, \quad j=1, \ldots, n
$$

We will next understand in which sense ω_{0} is canonical on $T^{*} \mathbb{R}^{n}$. To this end we show that on any cotangent bundle $T^{*} M$ one can define a canonical symplectic form ω_{0} without involving additional structure. We first define a canonical 1-form Θ_{0} on $T^{*} M$ and then ω_{0} as its exterior derivative.
Let $y=\left(x, v^{*}\right) \in T^{*} M$ (i.e. $x \in M$ and $\left.v^{*} \in T_{x}^{*} M\right)$ and $Y \in \mathcal{T}_{0}^{1}\left(T^{*} M\right)$. Then put

$$
\left(\Theta_{0}(y) \mid Y(y)\right)_{T_{y}^{*}\left(T^{*} M\right), T_{y}\left(T_{x} M\right)}:=\left(v^{*} \mid D \pi_{M}(Y(y))_{T_{x}^{*} M, T_{x} M}\right.
$$

where $\pi_{M}: T^{*} M \rightarrow M$ is the projection $\left(x, v^{*}\right) \mapsto x$ on the base point and hence its differential is a map

$$
D \pi_{M}: T\left(T^{*} M\right) \rightarrow T M
$$

So $\Theta_{0}(y)$ acts on $Y(y)$ as v^{*} acts on $T \pi(Y(y))$.

13.5 Definition. The canonical symplectic form

The 1-form $\Theta_{0} \in \mathcal{T}_{1}^{0}\left(T^{*} M\right)$ is called the canonical 1-form on the cotangent bundle. The form $\omega_{0}=-\mathrm{d} \Theta_{0} \in \mathcal{T}_{2}^{0}\left(T^{*} M\right)$ is called the canonical symplectic form on the phase space $T^{*} M$. M is called the configuration space.
13.6 Remark. To see that ω_{0} is indeed non-degenerate, we compute its local coordinate expression. In a bundle chart $D^{*} \varphi: T^{*} V \rightarrow T^{*} \varphi(V) \cong \varphi(V) \times \mathbb{R}^{n} \subset \mathbb{R}_{q}^{n} \times \mathbb{R}_{p}^{n}$ we denote the coordinates in the first factor by q and in the second factor by p. A point $(q, p) \in T^{*} M$ thus denotes the covector $p_{i} \mathrm{~d} q^{i} \in T_{q}^{*} M$ at the point $q \in M$.
A vector field $Y \in \mathcal{T}_{0}^{1}\left(T^{*} M\right)$ can thus be locally written as

$$
Y(q, p)=v^{i}(q, p) \partial_{q_{i}}+w^{i}(q, p) \partial_{p_{i}}
$$

where the index i runs from 1 to n. We have that

$$
D \pi Y(q, p)=v^{i}(q, p) \partial_{q_{i}}
$$

and

$$
\left(\Theta_{0}(q, p) \mid Y(q, p)\right)=\left(p_{j} \mathrm{~d} q^{j} \mid v^{i}(q, p) \partial q_{i}\right)=p_{i} v^{i}(q, p)=\left(p_{j} \mathrm{~d} q^{j} \mid Y(q, p)\right)
$$

Hence, $\Theta_{0}=p_{j} \mathrm{~d} q^{j}$, where it is important to keep in mind that $\Theta_{0} \in \mathcal{T}_{1}^{0}\left(T^{*} M\right)$ is a 1-form on the manifold $T^{*} M$ and not on M ! However, Θ_{0} vanishes on all vectors tangent to the fibres of $T^{*} M$. For the canonical symplectic form we thus find

$$
\omega_{0}=-\mathrm{d} \Theta_{0}=-\mathrm{d} p^{i} \wedge \mathrm{~d} q^{i}=\mathrm{d} q^{i} \wedge \mathrm{~d} p^{i}
$$

and ω_{0} is indeed non-degenerate and defines a symplectic form. Its coefficient matrix with respect to the coordinate vector fields $\left(\partial_{q_{1}}, \ldots, \partial_{q_{n}}, \partial_{p_{1}}, \ldots, \partial_{p_{n}}\right)$ has the form

$$
\left(\begin{array}{cc}
0 & \mathrm{id}_{n \times n} \\
-\mathrm{id}_{n \times n} & 0
\end{array}\right)
$$

on the whole coordinate patch.

13.7 Theorem. Darboux' theorem

Let (M, ω) be a symplectic manifold of dimension $2 n$ and $x \in M$. Then there exists a chart (V, φ) with $x \in V$ such that with $\varphi: V \rightarrow \mathbb{R}^{2 n}, \varphi(x)=:(q(x), p(x))$, it holds on all of V that

$$
\omega=\sum_{i=1}^{n} \mathrm{~d} q^{i} \wedge \mathrm{~d} p^{i}
$$

A chart in which ω has this form is called a canonical chart oder Darboux chart.
Proof. We will prove a slightly more general statement:

13.8 Lemma. Moser's trick

Let $U_{0}, U_{1} \subset \mathbb{R}^{2 n}$ be open neighbourhoods of $0 \in \mathbb{R}^{2 n}$ and ω_{0}, ω_{1} symplectic forms on U_{0} resp. U_{1}. There exists an open neighbourhood $U \subset U_{0} \cap U_{1}$ of zero and a diffeomorphism $F: U \rightarrow U$ such that $\left.\omega_{0}\right|_{U}=F^{*}\left(\left.\omega_{1}\right|_{U}\right)$ and $F(0)=0$.
The statement of Darboux' theorem now follows by choosing any local chart ($\tilde{V}, \tilde{\varphi}$) and making the following identifications: $U_{0}=\tilde{\varphi}(\tilde{V}), U_{1}=\mathbb{R}^{2 n}, \omega_{0}=\tilde{\varphi}_{*} \omega$ and $\omega_{1}=\sum_{i=1}^{n} \mathrm{~d} q^{i} \wedge \mathrm{~d} p^{i}$. Then the desired chart (V, φ) is given by $V=\tilde{\varphi}^{-1}(U)$ and $\varphi=\left.F \circ \tilde{\varphi}\right|_{V}$.

Proof. of Moser's Trick. According to remark 13.2, there is a linear transformation A of $\mathbb{R}^{2 n}$ such that $A_{*} \omega_{0}(0)=\omega_{1}(0)$. To make the notation in the proof less heavy, we can thus assume without loss of generality that $\omega_{0}(0)=\omega_{1}(0)$.
The diffeomorphism $F=F_{1}$ is now constructed as the solution of the differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F_{t}=X_{t} \circ F_{t}
$$

with initial datum $F_{0}=$ id and a time dependent vector field X_{t} that remains to be constructed in such a way, that

$$
\begin{equation*}
L_{X_{t}} \omega_{t}=\omega_{0}-\omega_{1} \quad \text { with } \quad \omega_{t}:=(1-t) \omega_{0}+t \omega_{1} \tag{13.1}
\end{equation*}
$$

holds. Then it follows that $F_{t}^{*} \omega_{t}=\omega_{0}$ for all $t \in[0,1]$, since $F_{0}^{*} \omega_{0}=\omega_{0}$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F_{t}^{*} \omega_{t}=F_{t}^{*}\left(L_{X_{t}} \omega_{t}+\frac{\mathrm{d}}{\mathrm{~d} t} \omega_{t}\right)=0
$$

In order to find a vector field X_{t} with the property 13.1 , we first note that $\left.\omega_{t}\right|_{U}$ is a symplectic form for all $t \in[0,1]$ if we chose the neighbourhood U of zero sufficiently small. This is because $\omega_{t}(0)=\omega_{0}(0)=\omega_{1}(0)$ is constant and thus non-degenerate for all t.

If we choose a contractable U, then on U the closed form $\omega_{0}-\omega_{1}$ is exact. Hence, $\omega_{0}-\omega_{1}=\mathrm{d} \theta$ for some 1-form θ. On the other hand, also ω_{t} is closed and according to Cartan's formula (theorem 8.13) we have $L_{X_{t}} \omega_{t}=\mathrm{d} i_{X_{t}} \omega_{t}$. We thus need to achieve

$$
i_{X_{t}} \omega_{t}=\theta+\mathrm{d} f
$$

for some $f \in \Lambda_{0}(U)$ and all $t \in[0,1]$, in order to obtain 13.1). However, since ω_{t} is non-degenerate on U there exists such an X_{t} for every smooth function f. By choosing f appropriately, we obtain $\theta(0)+\mathrm{d} f(0)=0$ and hence $X_{t}(0)=0$ and $F_{t}(0)=0$ for all $t \in[0,1]$.
13.9 Remark. Thus, on every symplectic manifold there are local coordinates such that ω has the normal form $\omega=\sum_{i=1}^{n} \mathrm{~d} q^{i} \wedge \mathrm{~d} p^{i}$ not only point wise, but in an open neighbourhood.
In the previous section we saw that the analogous statement does not hold for Riemannian manifolds (M, g). While for each $x \in M$ there exists a chart such that $g(x)=\sum_{i=1}^{n} \mathrm{~d} q^{i} \otimes \mathrm{~d} q^{i}$, a chart such that

$$
\left.g\right|_{V}=\mathrm{d} q^{i} \otimes \mathrm{~d} q^{i}
$$

for some open neighbourhood V of x exists if and only if the Riemannian curvature Rm associated with g vanishes on some neighbourhood of x, i.e. if M is flat around x.

We now come to a central result of Hamiltonian mechanics, Liouville's theorem. It states that Hamiltonian flows, i.e. flows of Hamiltonian vector fields, are symplectomorphisms, i.e. leave invariant the symplectic form.

13.10 Theorem. Liouville

Let (M, ω) be a symplectic manifold of $\operatorname{dimension~} \operatorname{dim} M=2 n$, and let X_{H} be the Hamiltonian vector field generated by $H \in C^{\infty}(M)$. Then the flow of X_{H} satisfies

$$
\Phi_{t}^{X_{H^{*}}} \omega=\omega
$$

and hence also

$$
\Phi_{t}^{X_{H^{*}}}(\underbrace{\omega \wedge \cdots \wedge \omega}_{k \text { copies }})=\underbrace{\omega \wedge \cdots \wedge \omega}_{k \text { copies }} \text { for } 1 \leq k \leq n \text {. }
$$

Proof. It holds that

$$
L_{X_{H}} \omega=\left(i_{X_{H}} \mathrm{~d}+\mathrm{d} i_{X_{H}}\right) \omega=i_{X_{H}} \underbrace{\mathrm{~d} \omega}_{=0}+\underbrace{\mathrm{dd} H}_{=0}=0 .
$$

Because of $\Phi_{0}^{X_{H}}=\mathrm{Id}$ we have $\Phi_{0}^{X_{H *}} \omega=\omega$ and with

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Phi_{t}^{X_{H^{*}}} \omega=\Phi_{t}^{X_{H *}} L_{X_{H}} \omega=0
$$

the statement follows.

13.11 Definition. The Liouville measure

The volume form

$$
\Omega:=\frac{(-1)^{\frac{(n-1) n}{2}}}{n!} \underbrace{\omega \wedge \omega \wedge \cdots \wedge \omega}_{n \text { copies }} \in \Lambda_{2 n}(M)
$$

is called the Liouville measure. In every canonical chart it has the form

$$
\Omega=\mathrm{d} q^{1} \wedge \cdots \wedge \mathrm{~d} q^{n} \wedge \mathrm{~d} p^{1} \wedge \cdots \wedge \mathrm{~d} p^{n} .
$$

13.12 Corollary. Invariance of the Liouville measure

A Hamiltonian flow $\Phi_{t}^{X_{H}}$ leaves invariant Ω, i.e.

$$
\Phi_{t}^{X_{H *}} \Omega=\Omega
$$

One says that Hamiltonian flows are volume preserving.

13.13 Definition. The Poisson bracket

Let (M, ω) be a symplectic manifold and $f, g \in C^{\infty}(M)$. The Poisson bracket of f and g is the function

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right) \in C^{\infty}(M)
$$

It holds that

$$
\{f, g\}=\omega\left(X_{f}, X_{g}\right)=i_{X_{g}} \omega\left(X_{f}, \cdot\right)=i_{X_{g}} \mathrm{~d} f=L_{X_{g}} f=-L_{X_{f}} g
$$

13.14 Remark. In a canonical chart we have

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

For the coordinate function the canonical relations hold,

$$
\left\{q_{i}, q_{j}\right\}=\left\{p_{i}, p_{j}\right\}=0 \quad \text { and } \quad\left\{q_{i}, p_{j}\right\}=\delta_{i j}
$$

13.15 Proposition. The Liouville equation

Let $g, H \in C^{\infty}(M)$ and let Φ_{t}^{H} be the Hamiltonian flow of X_{H}. Then $g(t):=g \circ \Phi_{t}^{H}$ solves the Liouville equation

$$
\frac{\partial}{\partial t} g(t)=\{g(t), H\}
$$

Whenever $\{g, H\}=0$, then $g(t)=g(0)$ for all $t \in \mathbb{R}$. In particular, $H(t)=H \circ \Phi_{t}^{H}=H$.
Proof. Homework assignment.
13.16 Definition. Symplectic maps and canonical transformations

Let (M, ω) and (N, σ) be symplectic manifolds. A smooth map $\Psi: M \rightarrow N$ is called symplectic, if

$$
\Psi^{*} \sigma=\omega
$$

A symplectic diffeomorphism is called a symplectomorphism or canonical transformation.

13.17 Proposition. Canonical transformations of Hamiltonian vector fields

Let $\Psi: M \rightarrow N$ be a canonical transformation and $f \in C^{\infty}(N)$. Then

$$
\Psi^{*} X_{f}=X_{\Psi^{*} f}
$$

Proof. Since ω is non-degenerate, this follows from

$$
\begin{aligned}
\omega\left(X_{\Psi^{*} f}, Y\right) & =\mathrm{d}\left(\Psi^{*} f\right)(Y)=\left(\Psi^{*} \mathrm{~d} f\right)(Y)=\mathrm{d} f\left(\Psi_{*} Y\right)=\sigma\left(X_{f}, \Psi_{*} Y\right) \\
& =\left(\Psi_{*} \omega\right)\left(X_{f}, \Psi_{*} Y\right)=\omega\left(\Psi^{*} X_{f}, Y\right)
\end{aligned}
$$

13.18 Corollary. The Lie bracket of Hamiltonian vector fields

The commutator of Hamiltonian vector fields is again a Hamiltonian vector fields, more precisely

$$
\left[X_{g}, X_{f}\right]=X_{\{f, g\}}
$$

Proof. Let Φ_{t} be the (local) flow of X_{g}. Then proposition 13.17 implies

$$
\Phi_{t}^{*} X_{f}=X_{\Phi_{t}^{*} f}
$$

evaluating the derivative at $t=0$ we find

$$
L_{X_{g}} X_{f}=X_{L_{X_{g}} f}
$$

Here we also used that the map $f \mapsto X_{f}$ is linear. By definition 13.13 we have $L_{X_{g}} f=\{f, g\}$ and by definition 8.7 $L_{X_{g}} X_{f}=\left[X_{g}, X_{f}\right]$.
13.19 Corollary. The form of the Hamiltonian equations of motion is invariant under canonical transformations: Let $H \in C^{\infty}(M)$ and let (q, p) be a canonical chart on M. According to example 13.4 in such a chart it holds that

$$
X_{H}=\binom{\frac{\partial H}{\partial p}}{-\frac{\partial H}{\partial q}}:=\frac{\partial H}{\partial p_{i}} \partial_{q_{i}}-\frac{\partial H}{\partial q_{i}} \partial_{p_{i}} .
$$

Let now $\Psi: M \rightarrow N$ be a canonical transformation and $K:=\Psi_{*} H=H \circ \Psi^{-1}$. The $(Q, P)=$ $(q, p) \circ \Psi^{-1}$ is a canonical chart on N and in this chart

$$
\Psi_{*} X_{H}=X_{K}=\binom{\frac{\partial K}{\partial P}}{-\frac{\partial K}{\partial Q}}
$$

Proof. The statement that $\Psi_{*} X_{H}=X_{K}$ was shown in proposition 13.17. It remains to check that (Q, P) is a canonical chart. This follows from

$$
\sigma\left(\partial_{Q_{i}}, \partial_{P_{j}}\right)=\sigma\left(\Psi_{*} \partial_{q_{i}}, \Psi_{*} \partial_{p_{j}}\right)=\Psi^{*} \sigma\left(\partial_{q_{i}}, \partial_{p_{j}}\right)=\omega\left(\partial_{q_{i}}, \partial_{p_{j}}\right) .
$$

German nomenclature

Hamiltonian vector field $=$ Hamiltonsches Vektorfeld
Poisson bracker $=$ Poissonklammer

Liouville measure $=$ Liouvillema $ß$
symplectic form $=$ symplektische Form

[^0]: ${ }^{1}$ In a metric space X a set $U \subset X$ is called open, if for any $x \in U$ there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset U$, i.e. such that the ball $B_{\varepsilon}(x):=\{y \in X \mid d(y, x)<\varepsilon\}$ of radius ε around x lies still completely in U.

[^1]: ${ }^{2}$ To see this let $\mathcal{A}=\left\{\left(V_{i}, \varphi_{i}\right)\right\}_{i \in I}$ be any atlas for M and $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ a countable base for the topology of M. Then for every $k \in \mathbb{N}$ there is an $i(k) \in I$ such that $U_{k} \subset V_{i(k)}$. Hence, $\left\{\left(U_{k},\left.\varphi_{i(k)}\right|_{U_{k}}\right)\right\}_{k \in \mathbb{N}}$ is an equivalent countable atlas for M.
 ${ }^{3}$ Let (M, \mathcal{O}) be a topological space and $N \subset M$. Then the relative topology on N is $\mathcal{P}:=\{U \subset N \mid \exists O \in \mathcal{O}: U=$ $O \cap N\}$.

[^2]: ${ }^{4}$ Let M be a topological space and $f: M \rightarrow N$ surjective. Then the quotient topology on N is given by defining $U \subset N$ to be open iff its preimage $f^{-1}(U) \subset M$ is open. If \sim is an equivalence relation on M, then the quotient M / \sim is the set of equivalence classes $[x]:=\{y \in M \mid y \sim x\}$ and the projection $p: M \rightarrow M / \sim, x \mapsto[x]$, is surjective. Hence, with respect to the quotient topology a set $U \in M / \sim$ is open if $\cup_{[x] \in U}[x] \subset M$ is open. The notation \mathbb{R} / \mathbb{Z} stands for \mathbb{R} / \sim where the equivalence relation is defined by $x \sim y \Leftrightarrow x-y \in \mathbb{Z}$. I.e. two points in \mathbb{R} are equivalent if they lie on the same orbit of the canonical group action of \mathbb{Z} acting on \mathbb{R}. The equivalence classes are all of the form $[x]=\{\ldots, x-2, x-1, x, x+1, x+2, \ldots\}$ and in any interval of the form $[a, a+1)$ their lies exactly one representative of each equivalence class.
 ${ }^{5}$ Let M be a set, (N, \mathcal{P}) a topological space, and $f: M \rightarrow N$ a map. Then f induces a topology on M be putting $\mathcal{O}_{f}:=\left\{f^{-1}(U) \mid U \in \mathcal{P}\right\}$. It is the smallest topology on M such that f is a continuous function. In case of several maps $f_{i}: M \rightarrow N$, as in the example, the induced topology is the smallest topology on M containing all $\mathcal{O}_{f_{i}}$.

[^3]: ${ }^{6}$ The same statement also applies to homoeomorphisms, but requires more advanced techniques to prove it.

[^4]: ${ }^{1}$ It will be convenient in the following to write the evaluation of a derivative $D f$ at a certain point p on a manifold M not as $D f(p)$, but as $\left.D f\right|_{p}$. To be consistent we use this notation also for derivatives of functions on \mathbb{R}, e.g. $\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(\varphi \circ c_{1}\right)\right|_{t=0}=\left(\varphi \circ c_{1}\right)^{\prime}(0)$ in 2.2.

[^5]: ${ }^{2}$ To see that the topology induced by the charts $D \varphi_{i}$ is Hausdorff and second countable, note that for two different points $\left(x_{1}, v_{1}\right)$ and $\left(x_{2}, v_{2}\right)$ in $T M$ we have either $x_{1} \neq x_{2}$, or $x_{1}=x_{2}$ and $v_{1} \neq v_{2}$. In the first case there are disjoint open sets $U_{1}, U_{2} \subset V_{1}$ containing x_{1} respectively x_{2}. Then $D \varphi_{i}^{-1}\left(U_{1} \times \mathbb{R}^{n}\right)$ and $D \varphi_{i}^{-1}\left(U_{2} \times \mathbb{R}^{n}\right)$ are disjoint open sets containing (x_{1}, v_{1}) respectively (x_{2}, v_{2}). In the second case with $x_{1}=x_{2}=: x$ there are disjoint open sets $U_{1}, U_{2} \subset \mathbb{R}^{n}$ containing $\left.D \varphi_{i}\right|_{x} v_{1}$ respectively $\left.D \varphi_{i}\right|_{x} v_{2}$. Again the preimages $D \varphi_{i}^{-1}\left(V \times U_{1}\right)$ and $D \varphi_{i}^{-1}\left(V \times U_{2}\right)$ are disjoint open sets containing (x_{1}, v_{1}) respectively (x_{2}, v_{2}). To constrcut a countable base for the induced toplogy on $T M$ let $\left\{U_{j}\right\}_{j}$ be a countable base for the toplogy of M (which is second countable by assumption) and $\left\{W_{k}\right\}_{k}$ a countable base for the topology of \mathbb{R}^{n}. Then $\left\{D \varphi_{i}^{-1}\left(U_{j} \times W_{k}\right)\right\}_{i, j, k}$ is a countable base for $T M$ when we chose a countable atlas \mathcal{A}.

