

Preparation course for the new Master Mathematical Physics Students 2018

1st October - 5th October, 2018

Metric and Topological Spaces

Exercise 1.

Let X be a set. Prove that

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

is a distance over X. In general we call d discrete distance and (X, d) discrete metric space.

Exercise 2.

Let (X, d) and (Y, d') be metric spaces. Let

$$L(X,Y) := \{f : X \to y \mid f \text{ is bounded}\},\$$
$$d_{\infty}(f,g) := \sup_{x \in X} d'(f(x),g(x)).$$

Prove that $(L(X,Y), d_{\infty})$ is a metric space.

Exercise 3.

We define

$$\ell^p := \left\{ \{x_n\} \subset \mathbb{R} \mid \sum_{n=1}^{+\infty} |x_n|^p < \infty \right\}, \qquad d_p(\{x_n\}, \{y_n\}) := \left(\sum_{n=1}^{+\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}$$

Prove that (ℓ^p, d_p) is a complete metric space.

Exercise 4.

We define

$$C^{0}([-1,1],\mathbb{R}) := \left\{ f : [-1,1] \to \mathbb{R}, \ f \text{ continuous} \right\}, \qquad d_{1}(f,g) := \int_{-1}^{1} |f(x) - g(x)| \, dx$$

Prove that $(C^0([-1,1],\mathbb{R}), d_1)$ is a metric space. Prove also that it is not complete.

Exercise 5.

Let (X, d) be a complete metric space. Let $C \subset X$ be a closed set. Prove that (C, d) is complete.

Exercise 6.

We define

$$C^{1}([a,b],\mathbb{R}) := \Big\{ f : [a,b] \to \mathbb{R}, f \text{ continuous with continuous derivative} \Big\},$$

$$\overline{d}_{\infty,1}(f,g) := \sup_{x \in [a,b]} |f'(x) - g'(x)| \qquad d_{\infty,1}(f,g) := \overline{d}_{\infty,1}(f,g) + d_{\infty}(f,g).$$

Is $(C^1([a,b],\mathbb{R}),\overline{d}_{\infty,1})$ a metric space? Is $(C^1([a,b],\mathbb{R}),d_{\infty,1})$ a metric space?

Exercise 7.

Prove that if (X, d) is a metric space, then

$$\overline{d}(x,y) := \frac{d(x,y)}{1 + d(x,y)}$$

is a distance on X. Prove also that d and \overline{d} are topologically equivalent.

Exercise 8.

Let (X, d) be a metric space. Verify that $\varepsilon : X \times X \to \mathbb{R}$ such that

$$\varepsilon(x,y) := \min\{1, d(x,y)\} \quad \forall x, y \in X,$$

is a distance over X.

Exercise 9.

- (a) Let $\{\tau_{\alpha}\}_{\alpha\in I}$ be a family of topologies on X, verify that $\cap_{\alpha\in I}\tau_{\alpha}$ is a topology on X.
- (b) Give an example of two topologies τ_1 and τ_2 on a set X such that $\tau_1 \cup \tau_2$ is not a topology on X.

Exercise 10.

Let X be a non empty set. Let τ and τ' be two topologies on X. Prove that the map id : $(X, \tau) \to (X, \tau')$ is continuous if and only $\tau' < \tau$.

Exercise 11.

Find a topological space (X, τ) (with τ different from the trivial or the discrete topology) such that every open set is also close. If in a topological space every open set is also closed, then it is true that every closed set is also open?

Exercise 12.

Let (X, d) be a discrete metric space. Determine the set \mathcal{A} of its open set and for every $x \in X$ determine the set $\mathcal{D}(x)$ of the balls centered in x.

Exercise 13.

Prove that every metrizable and finite space is a discrete metric space.

Exercise 14.

Let (X, τ) be a separable topological space. Let τ' be a topology on X such that $\tau' < \tau$. Prove that (X, τ') is separable.

Exercise 15.

Let $S := \{\emptyset, \mathbb{R}, \{(-\infty, a], a \in \mathbb{R}\}\}$. Verify that S is not a topology on \mathbb{R} . Determine the topology generated by $S, \tau(S)$. Compare $\tau(S)$ with the following topology τ' such that

$$\tau' := \left\{ \emptyset, \mathbb{R}, \{(-\infty, b), b \in \mathbb{R} \} \right\}$$