

Preparation course for the new Master Mathematical Physics Students 2018

1st October - 5th October, 2018

Measure Theory

Exercise 1.

Let X be a set, the symmetry difference of $A, B \in \mathcal{P}(X)$, denoted by $A\Delta B$ and defined by $A\Delta B := (A \setminus B) \cup (B \setminus A)$. Let (X, \mathcal{A}, μ) be a measure space. Show that

 $\mu(A\Delta B) \le \mu(A\Delta C) + \mu(C\Delta B), \qquad \forall A, B, C \in \mathcal{A}.$

Exercise 2.

Let \mathcal{G} the family of open set in a topological space. Give an example in which it is a σ -algebra and one in which it is not.

Exercise 3.

Let $\mathcal{C} = \{[0,1], [2,\infty)\} \subset \mathcal{P}(\mathbb{R})$. Find the minimal σ -algebra generated $\sigma_0(\mathcal{C})$ such that $\mathcal{C} \subset \sigma_0(\mathcal{C})$.

Exercise 4.

Exhibit two topologies on \mathbb{R} such that the corresponding family of of Borel set are different.

Exercise 5.

Let $f, g : \mathbb{R} \to \mathbb{R}$ continuous and equal a.e. in \mathbb{R} (i.e. up to a null set) with respect to the Lebesgue measure. Prove that f = g in \mathbb{R} .

Exercise 6.

For every $E \subset \mathbb{R}$, we define

$$m^*(E) := \Lambda^*([0,1] \cap E),$$

where Λ^* is the external Lebesgue measure on \mathbb{R} . Verify that m^* is an external measure and characterize the σ -algebra of the m^* -measureble sets. The measure obtained by restriction of m^* to such σ -algebra is translation invariant?

Exercise 7.

Let $\mu^* : \mathcal{P}(X) \to [0, \infty)$ defined by

$$\mu^*(\emptyset) := 0, \quad \mu^*(E) := 1 \ \forall E \subset X$$

Verify that μ^* is an external measure on X and determine the σ -algebra of the μ^* -mesureable sets.

Exercise 8.

Let X a set, $f: X \to [0, \infty)$. Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

$$\mu^*(E) := \begin{cases} 0 & \text{if } E = \emptyset, \\ \sup_{x \in E} f(x) & \text{otherwise.} \end{cases}$$

Then μ^* in an external measure?

Exercise 9.

Let X be a set, $x_0 \in X$. We define $\mathcal{A} := \{\emptyset, X, \{x_0\}, \{x_0\}^c\}$. Consider $\mu : \mathcal{A} \to [0, \infty)$ such that

$$\mu(\emptyset) = 0, \quad \mu(\{x_0\}) = \mu(X) = 1, \quad \mu(\{x_0\}^c) = 0$$

Then (X, \mathcal{A}, μ) is a complete measure space? Answer to the same question if

$$\mu(\emptyset) = 0, \quad \mu(\{x_0\}) = 1, \quad \mu(X) = 3, \quad \mu(\{x_0\}^c) = 2.$$

Exercise 10.

Let $f:[a,b] \to \mathbb{R}$ continuous. Prove that the graph of f, i.e.,

$$\mathcal{G}_f := \left\{ (x, f(x)), x \in [a, b] \right\}$$

is a measureable subset of \mathbb{R}^2 with vanishing Lebesgue measure.

Exercise 11.

Let (X, \mathcal{A}, μ) be a measure space. Show that for any $A, B \in \mathcal{A}$, we have

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Exercise 12.

Let $E \subset \mathbb{R}$. Prove that the following statements are equivalent:

- 1. E is Lebesgue mesureable
- 2. $\forall \varepsilon > 0$, there exists an open set O such that $E \subset O$ and $\Lambda^*(O \setminus E) \leq \varepsilon$.
- 3. There exists a set G that one can write as the intersection of countable many open sets such that $E \subset G$ and $\Lambda^*(G \setminus E) = 0$.

Exercise 13.

Let $E \in \mathcal{L}$ (where \mathcal{L} is the Lebesgue σ -algebra) such that $\Lambda(E) < \infty$. Define a real-valued function φ_E on \mathbb{R} by setting

$$\varphi_E(x) := \Lambda(E \cap [-\infty, x]), \text{ for } x \in \mathbb{R}.$$

Show that φ_E is an increasing function on \mathbb{R} . Show that φ_E satisfies the Lipschitz condition on \mathbb{R} , that is

$$|\varphi_E(x') - \varphi_E(x'')| \le |x' - x''|, \quad \forall x', x'' \in \mathbb{R}$$

Exercise 14.

Let $E \in \mathcal{L}$ such that $\Lambda(E) = 1$. Show that there exists a Lebesgue mesureable set $A \subset E$ such that $\Lambda(A) = \frac{1}{2}$.

Exercise 15.

- Let $E \subset \mathbb{R}$. Show that $\mathcal{F} = \{\emptyset, E, E^c, \mathbb{R}\}$ is the σ -algebra of subset of \mathbb{R} generated by $\{E\}$.
- If S and τ are collections of subsets of \mathbb{R} , then it is true that

$$\sigma(S \cup \tau) = \sigma(S) \cup \sigma(\tau)?$$

Exercise 16. Let \mathbb{Q} be the set of the rational numbers in \mathbb{R} .

- 1. Show that \mathbb{Q} is a null set in $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda)$.
- 2. Show that \mathbb{Q} is a F_{σ} -set
- 3. Show that there exists a G_{δ} -set such that $\mathbb{Q} \subset G$ and $\Lambda(G) = 0$.
- 4. Show that the set of all irrational numbers in \mathbb{R} is a G_{δ} -set.

Where we denote by F_{σ} -set a set given by the union of countable many closed sets and by G_{δ} -set a set given by the intersection of countable many open sets.

Exercise 17. Let $E \in \mathcal{L}$, with $\Lambda(E) > 0$. Prove that for every $\alpha \in (0, 1)$, there exists a finite open interval I such that

$$\alpha \Lambda(I) \le \Lambda(E \cap I) \le \Lambda(I).$$

Exercise 18. Prove that for everty $E \subset \mathbb{R}$, there exists a G_{δ} -set G, with $G \subset \mathbb{R}$, such that $E \subset G$ and $\Lambda^*(G) = \Lambda^*(E)$.