Preparation course for the new Master Mathematical Physics Students 2018

1st October - 5th October, 2018

Integrable Functions

Exercise 1.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing monotone function. Prove that f is Lebesgue measurable.

Exercise 2.

Let (X, \mathcal{A}, μ) be a measure space, with $\mu(X)<\infty$. Let $f \in L^{\infty}(X, \mathcal{A}, \mu)$. Prove that

$$
\|f\|_{\infty}=\lim _{p \rightarrow+\infty}\|f\|_{p}
$$

Exercise 3.

Consider

$$
f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x):=1-e^{-\frac{x^{2}}{n}}, \quad g_{n}:(0,1] \rightarrow \mathbb{R}, g_{n}(x):=\frac{1-e^{-\frac{x^{2}}{n}}}{\sqrt{x}}
$$

Study the pointwise convergence of $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ and compute $\lim _{n \rightarrow+\infty} \int_{[0,1]} f_{n}, d \Lambda$ and $\lim _{n \rightarrow+\infty} \int_{[0,1]} g_{n}, d \Lambda$.

Exercise 4.

Let $f:[1, \infty) \rightarrow \infty, f(x):=1 /[x]([x]=$ integer part of $x)$. Consider $f_{n}:[1, \infty) \rightarrow \mathbb{R}$, $f_{n}(x):=f(x) \chi_{[1, n)}(x)$ for all $n \geq 2$. Prove that f_{n} is integrable in $[1, \infty)$ and calculate the integrale. Prove also that f is not integrable in $[1, \infty)$.

Exercise 5.

1. Consider $\left(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu^{\#}\right)$. We define $g(n):=1 / n$!, evaluate $\int_{\mathbb{N}} g d \mu^{\#}$.
2. Let $f_{\alpha}(n):=\frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$, find the value of α such that $f_{\alpha} \in L^{1}\left(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu^{\#}\right)$.

Exercise 6.

Let (X, \mathcal{A}, μ) be a measure space, with $\mu(X)<\infty$. Let $f \in \mathcal{X}, \mathcal{A}$. Let

$$
E_{n}:=\{x \in X|n-1<|f(x)| \leq n\}, \quad n \in \mathbb{N} .
$$

Prove that

$$
f \in L^{1}(X, \mathcal{A}, \mu) \Leftrightarrow \sum_{n=1}^{\infty} n \mu\left(E_{n}\right)<\infty
$$

Is this still true if $\mu(X)=\infty$?

Exercise 7.

Let $f \in L^{1}(X, \mathcal{A}, \mu), f \geq 0$ a.e. We define

$$
f_{n}:=\frac{n f}{n+f},
$$

Prove that $\left\{f_{n}\right\} \subset L^{1}(X, \mathcal{A}, \mu)$ and that $\left\|f_{n}-f\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$

Exercise 8.

Let $f \in L^{1}(\mathbb{R}, \mathcal{L}, \Lambda)$ such that $\int_{\mathbb{R}}|x||f(x)| d \Lambda<\infty$. Prove that $F:[0,1] \rightarrow[0, \infty]$, such that

$$
F(\alpha):=\int_{\mathbb{R}}|x|^{\alpha}|f(x)| d \Lambda
$$

is a continuous function.

Exercise 9.

Let (X, \mathcal{A}, μ) be a measure space. Show that if $f_{n} \rightarrow f$ in measure and $g_{n} \rightarrow g$ in measure, then $f_{n}+g_{n} \rightarrow f+g$ in measure.

Exercise 10.

Let (X, \mathcal{A}, μ) be a finite measure space. Let Φ the set of the function in $\mathcal{M}(X, \mathcal{A})$ where we identify functions that are equal a.e. on X. Prove that

$$
\rho(f, g):=\int_{X} \frac{|f-g|}{1+|f-g|}, \quad \text { for } f, g \in \Phi
$$

is a distance on X.

Exercise 11.

1. Let $(\mathbb{R}, \mathcal{L}, \Lambda)$ be a measurable space. For every $f: \mathbb{R} \rightarrow \mathbb{R}$, define $f_{a}(x):=f(x-a)$. Prove that

$$
\int_{\mathbb{R}} f d \Lambda=\int_{\mathbb{R}} f_{a} d \Lambda
$$

2. Let f be a non-negative, real-valued Lebesgue measurable function on \mathbb{R}. Show that if $\sum_{n=1}^{\infty} f(x+n)$ is Lebesgue integrable on \mathbb{R}, then $f=0$ a.e. on \mathbb{R}.

Exercise 12.

Let (X, \mathcal{A}, μ) be a measure space. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}} \in L^{1}(X, \mathcal{A}, \mu)$. Suppose that $\left\|f_{n}-f\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$, show that

- $f_{n} \rightarrow f$ in measure on X.
- $\lim _{n \rightarrow+\infty} \int_{X}\left|f_{n}\right|=\int_{X}|f|$

Exercise 13.

Let (X, \mathcal{A}, μ) be a measure space.

1. Let f be a real-valued measurable function on X such that $f \in L^{1}(X) \cap L^{\infty}(X)$. Show that $f \in L^{p}(X)$ for every $p \in[1, \infty]$.
2. Let $\mu(X)<\infty$. Let $p, q \in[1, \infty]$ such that $p \leq q$. Prove that $L^{q}(X, \mathcal{A}, \mu) \subset L^{p}(X, \mathcal{A}, \mu)$.

Exercise 14.

Let (X, \mathcal{A}, μ) be a measure space. Let $\left\{f_{n}\right\} \subset L^{1}(X, \mathcal{A}, \mu)$ and $f \in L^{1}(X, \mathcal{A}, \mu)$ such that

- $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on X,
- $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu=\int_{X}|f| d \mu$.

Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|=0
$$

