EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Preparation course for the new Master Mathematical Physics Students 2018 8th October - 12th October, 2018

Third exercise sheet

1. Consider the Cauchy problem associated to the heat equation on the 1-dimensional torus \mathbb{T}^{1} :

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x)=\frac{\partial^{2}}{\partial x^{2}} u(t, x) \quad x \in \mathbb{T}^{1}, t>0 \\
u(0, x)=u_{0}(x), u_{0} \in L^{2}\left(\mathbb{T}^{1}\right) \text { (fixed) }
\end{array}\right.
$$

Find the solution $u(t, \cdot) \in L^{2}\left(\mathbb{T}^{1}\right)$ for every $t \geq 0$ as a Fourier series and study the asymptotic behavior, namely $L^{2}\left(\mathbb{T}^{1}\right)-\lim _{t \rightarrow \infty} u(t, \cdot)$, interpreting this result physically.
2. Let $\gamma \in \mathbb{R}$, we define

$$
\begin{aligned}
\left(T_{\gamma} f\right)(x) & :=f(x-\gamma) \quad \forall f \in L^{2}\left(\mathbb{T}^{1}\right) \\
\left(\rho_{\gamma} a\right)_{n} & :=\mathrm{e}^{-\mathrm{i} \gamma n} a_{n} \quad \forall a \in \ell^{2}(\mathbb{Z})
\end{aligned}
$$

Verify that both the operators T_{γ} and ρ_{γ} are unitary for every $\gamma \in \mathbb{R}$.
3. Let $\mathcal{F}: L^{2}\left(\mathbb{T}^{1}\right) \rightarrow \ell^{2}(\mathbb{Z})$ be the Fourier transform. Prove that the following properties are satisfied:
a)

$$
\mathcal{F} T_{\gamma}=\rho_{\gamma} \mathcal{F} \quad \forall \gamma \in \mathbb{R}
$$

b) If $f \in C^{1}\left(\mathbb{T}^{1}\right)$, then

$$
\left(\mathcal{F} \frac{\mathrm{d}}{\mathrm{~d} x} f\right)_{n}=\operatorname{i} n(\mathcal{F} f)_{n} \quad \forall n \in \mathbb{Z}
$$

