Preparation course for the new Master Mathematical Physics Students 2018

8th October - 12th October, 2018

Fourth exercise sheet

1. Find the solution $x(\cdot)$ to the Newton's equations of
a) the motion in \mathbb{R}^{3} for a point particle with mass $m>0$ under the gravitational force $F_{g}:=(0,0,-m g)$ with $g>0$, assuming that $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{3}$ and $\dot{x}\left(t_{0}\right)=v_{0} \in \mathbb{R}^{3}$, with $t_{0} \in \mathbb{R}$;
b) the motion in \mathbb{R} for a point particle with mass $m>0$ subject to the Hooke's force $F_{H}(x):=-k x$ with $k>0$, assuming that $x\left(t_{0}\right)=x_{0} \in \mathbb{R}$ and $\dot{x}\left(t_{0}\right)=v_{0} \in \mathbb{R}$, with $t_{0} \in \mathbb{R}$.
2. Write the Lagrangians for the two systems in the previous exercise.
3. Let D be an open set of $\mathbb{R}^{3 N}, N \geq 1$. Consider the Lagrangian $\mathcal{L}: D \times \mathbb{R}^{3 N} \rightarrow \mathbb{R}$ defined as

$$
\mathcal{L}(q, \xi):=\sum_{k=1}^{N} \frac{1}{2} m_{k}\left|\xi_{k}\right|^{2}-U(q)
$$

where $m_{k}>0$ for all $k \in\{1, \ldots, N\}$ and $U \in C^{n}(D, \mathbb{R}), n \geq 2$. Given a coordinate transformation in the configuaration space $\psi: \Lambda \times \mathbb{R} \rightarrow D$ such that $q=\psi(Q, t)$, compute the Lagragian $\widetilde{\mathcal{L}}: \Lambda \times \mathbb{R}^{3 N} \rightarrow \mathbb{R}$ in the new coordinates.
4. Consider the Lagrangian

$$
\mathcal{L}(q, \xi)=\frac{1}{2} m|\xi|^{2}-U(q), \quad(q, \xi) \in \mathbb{R}^{2} \times \mathbb{R}^{2}
$$

where $U(q)=U(|q|)(U$ is called a central potential $)$.
a) Which is a "suitable" coordinate transformation to rewrite the Lagrangian \mathcal{L} ? Once you have found it, write \mathcal{L} in the new coordinates.
b) Using the invariance of the Euler-Lagrangian equations under coordinate transformations in the configuaration space, study the motion in the plane taking advantage of a cyclic variable.
5. Let D be an open set of \mathbb{R}^{n}. Let $\mathcal{L} \in C^{k}\left(D \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}\right)$ with $k \geq 2$ be a Lagrangian. We define the generalized energy as

$$
\mathcal{H}(q, \xi, t):=\left\langle\xi, \frac{\partial \mathcal{L}}{\partial \xi}\right\rangle_{\mathbb{R}^{n}}-\mathcal{L}(q, \xi, t)
$$

Prove the following statement:
If $\phi:\left[t_{1}, t_{2}\right] \subset \mathbb{R} \rightarrow D$ is a solution of the Euler-Lagrange equations, then

$$
\frac{d}{d t} \mathcal{H}(\phi(t), \dot{\phi}(t), t)=-\frac{\partial \mathcal{L}}{\partial t}(\phi(t), \dot{\phi}(t), t) \quad \forall t \in\left[t_{1}, t_{2}\right] .
$$

