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Abstract

These are the lecture notes for the course Mathematical Quantum Theory, given at the
University of Tiibingen during fall 2018. They are mostly based on the lecture notes for the
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1 Introduction

1.1 The Schrodinger equation

Let us consider the evolution of one particle in R?, with d = 1,2, 3 the physically relevant
choices of the dimension d. We will assume the particle to be pointlike. We suppose that
the particle is exposed to the action of an external potential V : R* — R.

In quantum mechanics, the state of the system is described by the wave function (¢, x),
¥ : R x R+ C, square integrable:

ot ) = [ pot.aPde =1 (1.1)
The physical interpretation of |[¢)(t,z)|? is that of probability distribution for finding the
particle at (x,t). That is, the probability for finding the particle at the time ¢ in the region
A c R? is:
P¥t(A) = j [o(t, z)|2de . (1.2)
A

The evolution of the particle is defined by the time-dependent Schrodinger equation:

ih%z/)(t,x) = —;—mAxw(t,x) +V(x)p(t,x) = H(t,z) , (1.3)

where h is called the (reduced) Planck constant, and it has the dimensions of an action,
[R] = [energy] x [time]. The Laplace operator is defined as:
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The differential operator H is called the Hamiltonian of the system. The Schrédinger equa-
tion is an example of partial differential equation, and the discussion of existence and unique-
ness of solutions will be part of the present course.

Given a Hamiltonian H, the corresponding time-independent Schrédinger equation is:

Hy =Evy (1.5)

where the (real) number E has the interpretation of energy of the system. A square inte-
grable solution of the time-independent Schréodinger equation is called an eigenstate of the
Hamiltonian H. Notice that if ¢ is an eigenstate of H, then 1(t) = e~*#*/" is a solution of
the time-dependent Schrodinger equation.

Comparison with classical mechanics. Recall the motion of particle in classical
mechanics. The trajectory q¢(t) € R? of a classical particle is determined by Newton’s equa-
tion:

mi(t) = Fq(t)) = =VV(q(®),  (4(0),4(0)) = (o, do) - (1.6)



This second order ordinary differential equation can be rewritten as a first order differential
equation for the pair (p(t),q(t)), with p(t) = mgq(t) the momentum of the particle. The
Hamilton’s equation of motion for the particle is:

- CU) () e

with H(p,q) = % + V(q) the Hamiltonian of the particle. The Hamiltonian appearing
in the Schrodinger equation is called the canonical quantization of the classical Hamilto-
nian, obtained by replacing the position variable ¢ by a multiplication operator x, and the
momentum variable p by the differential operator —ihV .

Quantum mechanics is a more fundamental theory of nature than classical mechanics. A
natural question is to understand how classical mechanics emerges from quantum mechanics.

This question will be discussed later in the course, while introducing semiclassical analysis.

The main goal of this course is to develop the mathematical theory of the Schrédinger
equation, for one particle and for many particle systems. Notice that the Schrodinger equa-
tion is a linear evolution equation, in contrast to Hamilton’s equation of motion; this seems
to suggest that its mathematical study should be “easy”. This is not true, due to the fact
that the solution of the equation lives in an infinite dimensional space, and that the operator
H is unbounded.

2 Function spaces

In this section we shall introduce function spaces that will play an important role in the
mathematical formulation of quantum mechanics. We shall only review some basic results,
and we will refer the reader to [I, 2] for more details.

2.1 (% spaces

Definition 2.1. A multiindex o € Ng is a d-tuple o = (a1,...,0q), with a; € Ny, and
laf = Zle ;. For z € R we define:

$a=x11$22---$dd and ag ::m. (21)
Definition 2.2. Let A < R%, ke Ng. We define:
Cc*(A) = {f | f: A— C, 0%f is continuous for all o such that |a| < k} . (2.2)

Also, we denote by C¥(A) the restriction of C*(A) to functions with bounded derivatives:

CF(A) = {f | f e C*(A) and there exists co > 0 such that ¥|a| < k sup |02 f(z)| < Ca} :
€A
(2.3)

Remark 2.3. It turns out that the space C{f(A) 18 a Banach space, if endowed with the
following norm:

k
Ifleray = D7 >, suplogf(a)]. (2.4)

n=0 a:|laj=n zeA

We also define the space of C* functions with compact support.

Definition 2.4. Let:

supp(f) = {x € Dom(f) | f(x) # 0} (2.5)
be the support of the function f. Let A < R?, ke Ny. We define:

ck(A) = {f | feCFA) s.t. supp(f) N A is compact.} (2.6)
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Remark 2.5. CH(A) € CF(A) < Ck(A).

Example 2.6. (i) Let A =R, and f(z) = . We have f € C*(R). However, f ¢ C°(R),
since f is unbounded. Also, f ¢ C*(R), since supp(f) = R.

(i) Consider the “bump function”:

Fz) = { exp(—1/(1-2%) ze(-1,1) (2.7)

0 otherwise.

It is easy to see that all derivatives of [ are continuous in x € R, and are compactly
supported in (—1,1). Thus, f € CP(R).

2.2 LP spaces
Definition 2.7. Let A € R%, measurable. Let pe R, 1 < p < c0. We define:

LP(A) := {f | f: A— C, f measurable, J dx | f(x)|P < oo} . (2.8)
A

Remark 2.8. The integral SA dx--- has to be understood as a Lebesque integral. If the
function f is Riemann integrable, then it coincides with the standard Riemann integral.
More generally, one could replace dx by a Lebesgue measure p(dzx). In that case, we shall
denote the corresponding LP space by LP(A,du). One can check that LP is a vector space.

Besides being vector spaces, LP spaces are also Banach spaces, if endowed with the
following norm.

Definition 2.9. Let f € LP(A), 1 < p < w0. We define:

loscay o= ( [ awlsar) ™ 29)

One can check that the map | - | z»(4) has the following properties.
@) IMfllzecay = M flzecay, A C.
(ii) [fllzrcay =0 = f(z) =0 ae.
(iii) ||f + gHLP(A) < HfHLp(A) + HgHLp(A) (Minkowki inequality).

These properties imply that | - | 1»(4) is a semi-norm. The reason why it is not a norm is
that it is easy to imagine functions such that || f|z»4) = 0 and f(x) # 0 (take f to be zero
everywhere except at a point). To ensure that | -|»(4) defines a norm, one has to redefine L?
by identifying functions that differ on a zero measure set (e.g., on a countable set of points).
Given f e LP, we define an equivalent class of functions as

f={fell|f-f =0aec} (2.10)

We redefine L? as the set of the equivalence classes of functions f.
The L* space is defined as follows.

Definition 2.10.
L*(A):={f|f:A— C,f measurable ,3K > 0 s.t. |f(z)| < K a.e. }. (2.11)
A norm on L® is defined by taking the essential supremum of f:
Iz (ay :==inf {K | [f(2)| < K a.e. in A}. (2.12)

Here we shall list some important facts about LP spaces, without proof. We refer the
reader to [I] for details. Whenever it does not generate ambiguity, we might replace |- | z»(a)

by H ’ Hp'



Theorem 2.11 (Completeness). Let 1 < p < o, and let f*, i = 1,2,3,--- be a Cauchy
sequence in LP(A):

T [ £ - fil, = 0. (2.13)
1,j—00

Then, there exists fy € LP(A) such that
i |fs — full, = 0. (2.14)

Remark 2.12. We use the notation f; — f« and we say that f* converges strongly to fy in
Lr.

Another important property of LP spaces, for p < oo, is that their elements can be
approximated arbitrarily well by smooth, compactly supported functions. In other words,
CP(A) is dense in LP(A).

Theorem 2.13 (Approximation by C* functions.). Let f € LP(R™), 1 < p < 0. Then,
there exists a sequence of functions {f'}ien, f' € CP(R™) such that f* — f in LP.

2.3 Hilbert spaces

Let H be a vector space over C. A map (-, : H x H — C is called a scalar product (or a
inner product) over H if:

(i) it is linear in its second variable, that is:

(W, ap1 + Bipa) = alyy, 1) + B, p2) (2.15)
(i) it is antisymmetric, that is:
W) =L ) (2.16)
(iii) it is positive definite, that is:
) =0 (2.17)

for all ¢ € H, with (¢,¢) = 0 if and only if ¥ = 0.

Every scalar product induces a norm on H, defined through:

[l = /<, %) - (2.18)

The triangle inequality for | - || follows from the Cauchy-Schwartz inequality

K, o)l < [9lllell - (2.19)

In fact:

V@ + o9 +9)

VI + lol? + 2Re(, o)

VI + lel? + 20¢llel

[0+ Nl - (2.20)

If the vector space H equipped with the scalar product (-, -) is complete, the pair (H,{:,-))
is called a Hilbert space.

I + el

N

Example 2.14. (a) The space C" equipped with the scalar product:

(o, yen = Y T,y (2.21)

=1

is a Hilbert space.



(b) The space (% of the square summable sequences () jen, equipped with the scalar product:
o0
<$,y>g2 = Z jjyj (222)
j=1
18 a Hilbert space.

Example 2.15 (L? space.). In quantum mechanics, a special role is played by the space of
square integrable functions, L?(A). This space turns out to be a Hilbert space, if equipped
with the following scalar product:

S99 = [ do F@lgo). (22)
It is easy to see that the scalar product {f,g) is well defined, for all f,g € L*(A):

ol < [dli@lge)

< 5 [wl@r [P

1 1
§HfHL2(A) + §||9HL2(A) <. (2.24)

Also, it is easy to see that Eq. fulfills the properties (i)—(iii) spelled above.

3 The free Schodinger equation

To start our mathematical study of the Schrédinger equation we shall consider the simplest
possible situation, corresponding to a free particle in R?. We look for a solution 7 : R x R¢ —
C of the equation:

iat¢(t7z) = *%Azd}(tv‘r) ) (31)

where we set o = 1 and m = 1. A special solution can be found by separation of variables.
Consider first the time-independent Schrodinger equation:

— 3Au6(z) = Ao() (3.2

Then, a solution of Eq. (3.1)) is obtained by setting ¥(t,z) = e~ ¢(z). We are left with
finding a solution of the time-independent equation (3.2]). A family of solutions for such
equation is given by the plane waves on R%:

br(x) = ek = gilkazitthaza) for ke R . (3.3)

In fact: L2
1 .
— Apop(z) = §(k% + .+ kzﬁ)elk'z = %(bk(x) . (3.4)

Thus, we found a first solution of the free Schrodinger equation, Eq. (3.1):

k2 .
V() = ez leih T (3.5)

However, the above solution does not make sense in quantum mechanics, since ¥(¢,-) ¢
L2(RY) for all ¢:

fdx e (t, 2)[2 = +00 . (3.6)

Nevertheless, we can use the above unphysical solutions to construct physical solutions of the
Schrodinger equation, by using the fact that the Schrodinger equation is a linear equation:



a linear combination of solutions of Eq. (3.1)) is a solution of Eq. (3.1). More precisely, we
shall consider solutions of the form:

vlat) = |

p(k)Uy(z, t)dk = J p(k)e i U5tk g (3.7)
]Rd

Rd

Formally, ¥ (z,t) is a solution of Eq. (3.1]), with initial datum at ¢ = 0:

¢@m5%@:LﬂWMMh (3.8)

The questions we will address here are: for which class of p(k) does the function (¢, x)
makes sense from a quantum mechanical viewpoint, namely (¢, -) € L?(R%)?

3.1 The Fourier transform on L!
We are now ready to introduce the Fourier transform for L' functions.
Definition 3.1. Let f € L'(R?). We define the Fourier transform f = Ff as

1

FI) (k) = f(k) =
(FN(k) = f(k) )

. de e R f (), keRY. (3.9)

We define the inverse Fourier transform f = F~'f as:

1

FINOE) = f(k) = —
(F (k) = f(k) 2n)?

J dz e f(z) . (3.10)
R
Remark 3.2. Since |[e"**| =1 and f € L'(R"), f and f are well defined:

ﬂW<w¥fMWM—@¥Uh. (3.11)

The next lemma will be useful to study the regularity properties of the Fourier transform.

Lemma 3.3. Let T < R be an open interval, and f : R? x ' — C such that f(x,v) € L'(R%)
forallyeT. Let I() = SRd f(z,v)dx. Then, the following is true.

(a) If the map vy — f(x,7) is continuous for almost all x € R?, and if there exists a function
g € L'(R?) such that sup.p | f(z,7)| < g(x) for almost all x € R?, then I(v) is also
continuous.

(b) If the map v — f(x,7) is continuously differentiable for almost all x € R?, and if there
exists a function g € L'(RY) such that supcr [0+ f(z,7)| < g(x) for almost all x € R?,
then 1(7y) is also continuously differentiable. Moreover:

dI d 0
@(7) T dy f(z,v)dx = JRd %f(x,v)d;v . (3.12)

Proof. The proof immediately follows from the dominated convergence theorem, see [I]. ®

Lemma has important consequences on the behavior of the Fourier transform.

Theorem 3.4 (Riemann-Lebesgue.). Let f € L*(R?). Then:

feOp(RY) = {feC(IR{d) im sup |f(z)] =0

! } . (3.13)
R>0|3>R

Proof. The continuity immediately follows from Lemmal[3.3] The falloff at infinity will follow

from a result we will discuss later on. [

Next, we will focus on the properties of the “nicest possible” functions, namely the
Schwartz functions. Later, we will come back on a more general class of functions, by using
approximation arguments.



Definition 3.5 (Schwartz functions.). The Schwartz space S(R?) is the set of functions
f € C*(RY) such that:

[ flla == 12207 flloo < o0, (3.14)

for all multiindices «, 5.

That is, the functions in S(R?) decay faster than any inverse polynomial in x, and the
same is true for all their partial derivatives. Obviously, if f € S then z*dsf € S for all
multiindices o and 8. Also, S(R?) = LP(R?). Finally, the maps |- [a5 : S — [0,0) are
norms.

Remark 3.6. Notice that C*(R?) < S(R?), which means that S(RY) is dense in LP(RY),
1<p<oo.

Definition 3.7. We say that f, — f in S if lim, o | f — fala.s — 0 for all a, 8 € Ng.

Proposition 3.8 (S is a metric space.). Convergence in S is equivalent to convergence with
respect to the metric:

(o0
— Hf_g‘aﬂ
d N N = Glap 1
s(f,9) ;O B T ey (3.15)

|a,8 .
Remark 3.9. Notice that ds(f,g) < 2.

Proof. Let us first check that ds(f, g) is a metric. Positivity is trivial, and also symmetry:
ds(f,9) = ds(g, f). From the definition, we see that ds(f,g) = 0 implies |f — gloo = | f —
gleo = 0, that is f = g. Also, the triangle inequality holds true: ds(f,g) < ds(f,h)+ds(h,g),
since | - |a,3 satisfies the triangle inequality and the function h(z) = 2/(1 + ) is monotone
increasing and satisfies h(z +y) < h(x) + h(y). This shows that dg is a metric. Convergence
in § immediately implies convergence with respect to ds(f,g). On the other hand, suppose
that ds(fn, f) — 0. To prove convergence in S we use that, for all o, 8 there exists a constant
Ca,3 > 0 such that:

[fn = fllap < Capds(fn, f) - (3.16)

Therefore, convergence with respect to ds implies convergence in S. n
Theorem 3.10. The Schwartz space is complete.

Proof. Let (f,) be a Cauchy sequence in S. Then, (f,,) is a Cauchy sequence with respect
to the (semi-)norms | - |, 5. Also, convergence in S implies that 2202 f,, — ga.s(x) in L®
norm, with g, 5 € Cy(R?), the space of continuous, bounded functions. This last fact is
implied by the completeness of C},(R?) with respect to the | - o norm, recall Remark

We are left with showing that g := go0 € C*(R?), and that 2%0%g = g, 5. If s0, g€ S
and ds(fm, g) — 0. For simplicity, let us consider the case d = 1. We would like to show that
g € C1(R) and that 0,9 = go1. Higher derivatives and higher dimensions can be studied in
the same way. For f,, € S, we write:

o) = £0(0)+ [ Frn0) . (317
0
We know that f,, — g and f,, — go1 uniformly. Therefore, the m — oo limit of Eq. (3.17))
is:
xr
@) = 90) + [ g0a(w)dy. (318)
0
This proves that g € C'(R) with ¢ = go 1. u

Lemma 3.11 (Properties of F on S.). The maps F and F~1 are continuous, linear maps
from S into itself. Moreover, for all a, 8 it holds:

((m)aa,fff)(k) - (fag(—m)ﬁ f)(k) . (3.19)



Remark 3.12. In particular,

~ — ~

(@f)(k) =i(Vif)(k)  and (Vo f)(k) =ikf(k) . (3.20)
Proof. Let f e S. Recall:

f(x)e*dz . (3.21)

Then:

@m?2 (R RF) k) = | k)°ofe (@) da

S

Rd

- [ @ ~ik £ (0) da
R

_ f 1)lel (@2~ % ) (—iz)P f () . (3.22)
R

Integrating by parts:
(om) ¥ (k)"0 F) (k) = de e~ (32 (—iz)? () du
- (27r)d/2(fag(—m)ﬂf)(k). (3.23)

This shows that, in particular, F f € C®. Moreover:

A o . o (L [a)e
R I dewwﬁf(mnmdx
1 29050 [
< G |0 ) |y
< CZ sup (3.24)

j=0 |&|+|B3|=3j

with m = max{|«/|, ||} + 2d, and for C' > 0 independent of f. Therefore, Ff € S. Eq.
also shows that f, — f in S implies fn — f in S. In particular, Eq. can be used to
show that F : § — § is continuous, with respect to the topology induced by ds(-,). In fact,
suppose that f, — f with respect to ds. Then, by Eq. , there exists C,.g > 0 such
that:

1 /o = fla,

Capds(fn [) - (3.25)

]
Theorem 3.13. The map F : S — S is a continuous bijection, with inverse F 1.

Proof. We will show that F~!oF = 15 (the same proof gives FoF~! = 1g). Since F 1oF
and 1g are both continuous in &, it is sufficient to prove their equality on a dense subset of

S.
Lemma 3.14. C®(R?) is dense in S(R?).

Proof. (of Lemma ) Let:

fexp(—1/Q—|x|*)+1) for|z|<1
Gle) = { 0 otherwise. (3.26)
Let f € S(RY), and let f,(x) = f(z)G(x/n). Clearly, f, € C*(R?). Moreover, lim, o | f —
fla,p =0 for all «, 5. =



Let us now come back to the proof of Theorem [3.13] By Lemma [3.14] it is sufficient to
prove the claim of Theorem on CP(RY). Let f e C¥(R?). Let us denote by W,, c R?
a cube in R?, centered in the origin, with side 2m. Let us choose m large enough so that
supp(f) € W,,,. Let K,,, = W/mZd. We can express the function f on W, as the uniformly
convergent Fourier series:

Z fre™ (3.27)

with Fourier coefficients:

(27r)d/2

fo= Vol Jf ﬂkwdfc_W fl)e e = T (FHK) - (329

Therefore we have:

eik-x T
fla)y=> M(—)d. (3.29)

a2
W (2m)4/ m

The observation is that the right-hand side of Eq. (3.29) is a Riemann sum, over cubes of
volume (7/m)? and with k the center of the cube. Therefore, we have:

6ik~r T .
fl@)= lim ) %()d_ 1)d/2 fRd(}"f)(k)el“dk:(]f‘lo]-"f)(x).

MU ER m (2m
(3.30)
This proves that F~1 o F = Lox ray- L]
Proposition 3.15. Let f,g € S(R?). Then:
f@)g@)de = | f)j(z)da . (3.31)
Rd Rd

Moreover, A

£z = 1f]2 - (3.32)

Proof. By Fubini’s theorem,

JRd (J}Rd e—ik-xf(k)dk:)g(m)dx = J;Rd (J}Rd e_ik'xg(a?)dx)f(k)dk; . (3.33)

Therefore 2m)Y2 dx f(z)g(x) = (2m)¥2 (dk §(k)f(k). This proves Eq. (3.33). To prove

(2
Eq. , we use that Ff(z) = F~

Lf(x), which can be easily checked. Thus, Eq. (3.32
follows as a special case of Eq. (3.33), choosing g(z) = Ff(z).

|
Example 3.16 (The Fourier transform of a Gaussian.). Let A > 0, and let g\(z) = exp ( —
A@) be the Gaussian function. Then, we claim that:
(k) = A~ % ex _IRE (3.34)
gx = p I\ . .

To prove Eq. , we proceed as follows. By scaling, it is enough to consider the case
2
A = 1. Also, since g1(x) = Hle exp (—%’), it is enough to consider the case n = 1. We

have:

P 1 ik — 2 1 _(e+im)? g2

(k) = —— | dee ®7e % = — e = gi (k) f(R), (3.35)

(2m)z2 (2m)2
ztik)?

where we defined f(k) = - By dominated convergence, we can differentiate
under the integral sign:

d dz (z+ik)? dr . d _(@+in?

—f(k) = J —(x +1ik))ie” 2 = J —i—e 2 =0. 3.36

H0 =] G ) Nerier (3.36)

This means that f(k) is a constant and, in particular, f(k) = f(0) = 1. This proves Eq.
3.77).
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3.2 Solution of the free Schrodinger equation

Let us now come back to the Schrédinger equation for one free particle in R%:

ion(t,z) — —%Am(t, 7). (3.37)

Let us take the Fourier transform in both sides. Proceeding formally, we get:

00 (t, k) = SIkP(E,R) (3.38)

The advantage of taking the Fourier transform is that now we are left with an ordinary
differential equation of the first order. The solution is:

¢(uk)::e*“%i%¢«xk). (3.39)

To get a solution of the original equation (3.37]), we have to take the inverse Fourier transform.
We get:
LI
B(t,x) = (Fle = Fafo)(x) (3.40)
with initial datum (0, z) = ¥o(z). The next theorem shows that the above formal manip-
ulation can be made rigorous for a suitable class of regular initial data.

Theorem 3.17 (Existence of a unique global solution for the free Schrédinger equation.). Let
Yo € S(RY). Then, there exists a global solution 1) € C®(Ry, S(RY)) of the free Schridinger
equation with (0, x) = 1o(x) for t # 0, given by the expression:

1 lz—ul®
V(t.2) = G |, @ vo(w)dy (3.41)

Moreover, [¥(t,-)|lL2re) = [[P0] L2 ra)-

Proof. To begin, notice first that, for ¢y € S, the expression (3.40) is well defined. Hence,
Eq. (3.40) is a solution of the free Schrodinger equation (3.37)). Next, we shall show that

¥ € CP(Ry, S(RY)). Let us start by showing that ¢ — () is differentiable. Let: ¢)(t, ) :=
. 2 .
—i(}"_lge_z%t]:wo)(x). Then, 9(t,-) € S(R?). Furthermore, we claim that:

mwwa+m—wm
h—0 h

—¢@w 0 (3.42)

a,3 B

with respect to any | - [lo,5. By continuity of F and of F~!, this is equivalent to:

e Rl

lim -0, (3.43)

«a, B

. 2 A~
for all «, 8. This follows from the smoothness of e~ and from the decay of g (k):

A N k|2 k|2
Gt +h) - ¢ _ app (e M —em e RP
B0 o) g R
- 0 as h — 0. (3.44)

In the same way, one can prove that (t,z) € C*(R;,S(R?)) for any k& > 1, and hence
that 9 (t,z) € C°(Ry, S(R?)). The uniqueness of the solution for 1y € S follows from the
uniqueness of the solution of (3.38]). The formula (3.41) follows from an explicit computation,

using that:
R
lim e dy = \/?, (3.45)
R—0 R [0

for all & € C such that Rea = 0. Finally, the isometry in L? follows from the 2isometry
property of the maps F and F~!, proven in Eq. 3.32), and from the fact that letkI"t2| = 1,
|
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Remark 3.18 (Decay of the solutions of the Schrodinger equation.). The formula (3.41
immediately implies that:

[0l L
t,z)| <
ﬁ@W(wﬂ (Omt)a?

—0 as t — 0. (3.46)

However, as we just proved, the L? norm stays constant. This means that the solution of the
Schrodinger equation spreads in space. One speaks about the “spreading of the wave packet”.

Definition 3.19 (Polynomially bounded functions.). Let ;%l(Rd) be the space of the poly-

nomially bounded smooth functions: g € ;‘;l(Rd) if g€ C*(RY) and if:
16%g(x)] < Cala)™@ = Co(1 + |25, (3.47)
for all .

Motivated by Lemma we introduce the notion of pseudodifferential operator.
Definition 3.20 (Pseudodifferential operator.). Let f € C;‘;l(Rd). Let My : § — S be

the multiplication operator ¥(z) — f(x)¥(x). We define the pseudodifferential operator
f(=iVy) : S - S as:

(f(=iVo)¥) () := (FTIMpFy)(x) = (F~ f (k) F) (@) - (3.48)

Remark 3.21. Notice that the mapping My : S — S is continuous. The continuity of My
and of F implies the continuity of f(—iV,). For f(k) = k%, one naturally has f(—iV) =
(=i)l*lo2. For polynomial functions f, the corresponding pseudodifferential operators are
differential operators.

Example 3.22 (Translations and the free propagator.). Let a € R and T, = e~"**. One
has T, € Cpy; and for ¢ € S(R?) one has:

1

(To(=iV)Y)(z) = @n?

o 1 _ )

—ik-a ik-x _ ik-(z—a _
Jﬂw e w®Mk—Chpre( Vp(k)dk = (x — a) .
(3.49)

The operator T,(—iV) is called the translation operator. Another example is Ps(t, k) =

e~ "t One has Py(t,-) € C;‘)I(Rd) and hence:

Y(t, @) = (Pr(t, —iVa)to)(z) - (3.50)
This operator is also called the free propagator, and one also writes:
Y(t) = 3Bty (3.51)

Example 3.23 (The heat equation and diffusion.). We can apply the previous theory to
solve the heat equation:

(}tf(t7m) = %Amf(tax) ) (352)
for £(0,-) = foe S(RY). Lett > 0. The solution of Eq. reads:
F(t) = 221 £(0) = W(t, =iV) fo , (3.53)

2
with W (t,k) = e~'=t. Notice that W (t) € Cpor only for t = 0. In general, one cannot

establish existence of solutions of the heat equation for t < 0. However, if fo has compact
support, the corresponding solution of the heat equation exists for all times.

Definition 3.24 (Convolutions.). Let f,g € S. We define the convolution f = g as:

(F+9)la) = | fla= oty (354
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Here we list some properties of the convolution operation.
Theorem 3.25. Let f,g,h € S. The following is true.
(i) (f=g)xh=[fx(g=h)and fxg=g=[.
(ii) The map g — f =g from S to S is continuous.
(#i) It follows that:
frg=(@n)"f-q, (3.55)

and also J/‘B = (2m)"¥2f % §. Moreover, one has:
g(=iV)f = FHgf) = (2m) =P« f . (3.56)

Proof. The properties (i) and (ii) easily follows from the definition. Concerning (i%), conti-
nuity follows from: X
frg=0@m)PPFfFg; (3.57)

that is, the convolution with f corresponds to the combination of Fourier transform, mul-
tiplication by f, and inverse Fourier transform. All these maps are continuous, and their
composition preserves continuity. Thus (i¢) holds true. n

Example 3.26 (The heat equation.). Consider:

1 _l=i?

G(t,x) == (27T)_d/2(}'_1W)(t,x):We 2. (3.58)

The function G(t,x) is called the fundamental solution of the heat equation, and can be used
to construct more general solutions. In fact:

f.3) = (W (=92 o)) = (G0) = 1)(@) = s [ 5 oy (359

3.2.1 Comparison between Schrodinger, heat and wave equations
To conclude this section, let us compare the free Schrédinger equation to the heat equation

and the wave equation. For simplicity, we shall consider the case d = 1.

The wave equation. The wave equation can be used to describe the motion of an
oscillating string of length L. Let f(x,t) be the wave deflection. The equation reads:

0? 0?
ﬁ (t,l‘) = @f(taz) ) (360)
with boundary conditions:
F(8,0) = f(t,1) = 0. (3.61)

The acceleration of the string at the point is x is proportional to the curvature at the same
point, and this explains why the string oscillates.

The heat equation. The temperature profile for the temperature f(x,t) in a rod of
length L, which temperature is kept to zero at both ends, satisfies the heat equation:

2ttty = St (3.62)
ot T g\ '
with boundary condition:

f(t,0)=f(t,L)=0. (3.63)

The rate at which the temperature changes at the position x is proportional to the curvature
at that point. Therefore, the temperature converges to the constant value f(x) = 0.

13



The Schrodinger equation. The motion of one free quantum particle in one dimension
is described by the Schrédinger equation:

gl/)(t x) = z‘ﬁw(t x) (3.64)
ot T Top2 T '
with boundary condition:

Y(t,0) =¢(t,L)=0. (3.65)

As for the heat equation, it depends on the first time derivative. However, due to the presence
of the factor i, it gives rise to an oscillatory behavior of the solution. In fact, the function
¥(t,x) is now complex values, which we can picture as a time-dependent vector field in R2.
Even though the rate of change of the wave function is proportional to the curvature at the
point x, because of the 4 factor it is described by an orthogonal vector to ¥ (x). Therefore,
in general both the argument and the modulus of (¢, ) change in time.

3.3 Tempered distribution

The goal of this section is to extend the notion of partial differential equation to functions
that are not smooth, in fact not even differentiable in the standard sense. In particular, we
shall be interested in formulating the Schrodinger equation for initial data which are only in

L2(RY).

Definition 3.27. The elements of the dual space S'(R?) of S(R?) are called tempered dis-
tribution.

Remark 3.28. The dual space V' of a topological vector space V is the space of continuous
linear maps from V to C. For f €V and T € V', one defines the pairing of f and T as:

(T :=T(f) . (3.66)

Example 3.29. Let us discuss some examples of tempered distributions.

(a) Let g:R% — C such that (1 + |z|>)"™g(z) € LY(R?) for m € N. Then, the mapping

T,:S—C, f— g(z) f(z) dx (3.67)
R

is linear and continuous, hence Ty € S'.

Proof. Let f, — fin S. Then,

lim [T, (fn =) < lim | g(@)l[fu(z) = f(2)| dz

n—o0 Rd

< @+ [l gl lim (3 )" | fn = Fllee = 0. (3.68)

|
(b) The delta-distribution is defined as:
§5:8—-C, fe—0(f):= f(0). (3.69)
Therefore, § € S’. One also writes:
o(f) = » §(z)f(z)dx (3.70)
and:
fRd d(z —a)f(x)de = f(a) . (3.71)

The expression Fq. is formal: there exists no function § : R* — C that gives
. Nevertheless, one can approzimate 5 € S’ by functions, more and more “peaked”
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at a, such that in the limit Eq. holds true. For example, let g € LY(R) with
(dzg(x) = 1. Let:

gn(z) := nlg(nz) . (3.72)
Then, by dominated convergence, for any continuous bounded function f, and in par-
ticular for all f € S, one has:

iy 7,,(f) = Jim | 0.()f(@)do = Jim, (| o@)1O)do+ [ gu(@)(7(2) = £0)) o)

n—o0 n—o0 n—0o0

f(0) + lim Rg(y)(f(y/n) — f(0)) dy = f(0) =6(f) -

In the last step we used that the argument of the integral converges to zero pointwise in
xz, as n — o0, and dominated convergence theorem to bring the limit inside the integral.

Next, we shall introduce the notions of weak and weak*® convergence.

Definition 3.30. Let V' be a topological vector space and V' its dual.

(i) A sequence (my) in'V converges weakly to m e V if:

lim T(my,) =T(m), forallTeV'. (3.74)

n—0o0
One also writes w — lim,_,omy = M 0T My — M.

(i) A sequence (T,) in V' converges in the weak® topology to T € V' if:

lim T,(m) =T(m), forallmeV. (3.75)

n—0o0

One also writes w* —limy, o0 T, =T or Ty, Ao

Theorem 3.31 (The adjoint map.). Let A: S — S be a linear and continuous map. Then,
the map
A:§ -8, (A'T)(f) :=T(Af) forall feS8 (3.76)

1s weak® continuous. The map A’ is called the adjoint of A.

Proof. One has A'T € §’, where A'T =T o A is a continuous map on S. To prove the weak*
continuity of A’ : 8’ — &', we proceed as follows. Let T, = T'. Then, for each f € S:

lim (A'T,)(f) = lim T,(Af) = T(Af) = (AT)(f) . (3.77)

n—oo
that is A'T), = A'T. n

Remark 3.32. Strictly speaking, the above proof only shows sequential continuity in S’.
This does not immediately imply continuity in S’, since the topology of S’ is not defined
through a metric. Nevertheless, the above argument can be repeated for a net on S’, and net
continuity would imply continuity.

Next, we define the Fourier transform on &’

Definition 3.33. For T € S, the Fourier transform T € S' is defined as:

T(f):=T(f)  forall fes. (3.78)

Remark 3.34. In other words, Fs/ := Fg. That is, the Fourier transform on S’ is defined
as the adjoint of the Fourier transform on S.

Lemma 3.35. The Fourier transform F : 8" — 8’ is a weak® continuous bijection. More-

over, for f €S, ff = Tf-
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Proof. Since F : § — S is continuous, it follows from Theorem that 7 : &' — &' is
weak* continuous. Also, since (F~YFT)(f) = T(FF1f) = T(f), the Fourier transform on
S’ is also bijective, with inverse F~!. Finally, let f € L'. Then:

A~

71(9) = 1y9) = | @)ita)da = | Flalgta) do = T5(0) (3.79)
where the second equality follows from Proposition [3.15] u

Example 3.36 (The Fourier transform of the d-distribution.). Let §(f) be the delta distri-
bution, 6(f) = f(0). Then:

) = 81) = 10 = s [ S e = | @y =Ty (3380

with g = (27)~%? the constant function. That is, the Fourier transform of the delta distri-
bution is the constant function g.

Let us now introduce the notion of derivative on the space of distributions &’.

Definition 3.37 (The distributional derivative.). For T € &', we define its distributional
derivative 09T € S as:

(03T)(f) = T((=1)*1o3f) - (3.81)

Lemma 3.38. The distributional derivative 03 : 8" — S’ is weak® continuous and extends
the notion of derivative on S; that is, for g € S we have:

0Ty = Tay - (3.82)
Proof. As an adjoint map, the derivative 0% is continuous thanks to Theorem [B:31} The
property Eq. (3.82)) follows from the integration by parts formula:

ET,)() = T((-V1e2) = [ gl@) (125 f(@)do = [ F@59(e) dn = Toey (1)

(3.83)
| ]

Example 3.39 (The derivative of the delta distribution.). It follows that:
(028)(f) = 8((=D)l*log f) = (=1)*log £(0) . (3.84)

For the Heaviside function 6(z) = 1y )(z) on R one has: -6 = .

Lemma 3.40. Let g € C7,. Then, (gT)(f) = T(gf) defines a weak* continuous map from
S to 8. In general, one cannot define the product of two distributions, but one can define
the product of a distribution and of a function in C’;%l.

Proof. Exercise. L

Lemma 3.41. Let g € S and g(x) = g(—x). Then (g =T)(f) := T(g = f) defines a weak™*
continuous map from S' to S', which extends the convolution on S: g+ T}, = Tyyup for he S.

Proof. Exercise. L]

This result allows to prove the following theorem.

Theorem 3.42. S is dense in S’ in the weak™ topology.

Proof. Let us give a sketch of the proof. We want to show that for all T € &’ there exists
(¢n) < S such that:

T,, =T. (3.85)

n
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We proceed as follows. Let (g,) = S such that (g, * f) — f in S (e.g., gn(z) = nig(nx),
with g € S and (g = 1.) Then, we write:

(=TI = T(GurS)
= 1 [dvaal - 01 0)

- j dy TGy f ) (3.86)

with §pn () = gn(- —y). Thus, we would be tempted to say that (g, = T) = Tg,, with
&n(y) = T(Gn,y). To prove this, we simply notice that &, € CS%I(Rd) (exercise), which
implies that &,f € S, and hence that it is an integrable function. Thus, by the weak®
continuity of the convolution, Lemma we just proved that for each T € S’ there exists

&n € Cpyy such that:

Te, =T (3.87)

To conclude, we would like to show that the sequence (&,) can be replaced by a sequence
(pn) in S. We proceed as follows. Let G(z) as in Eq. (3.26). Let: ¢, (z) = &,(x)G(z/n).
Then, being G(x/n) compactly supported, ¢, € S. Notice that T, (f) = T¢, (G(-/n)f). Fix
e > 0. By what we just proved, for n large enough:

T, (G(/n)f) = T(G(-/n)f)| < /3. (3.89)
(Notice that the argument of the distributions is n-dependent. Nevertheless, this is not a

problem, since the || - |43 norms of G(-/n)f are all bounded uniformly in n.) Also, by the
continuity of T

T@emn -1 <23, (3.89)
where we used that G(-/n)f — f — 0in S, as n — 0. Finally, again by Eq. (3.87):
() = Te. ()] < </3. (3.90)

All together, for any f € S and for any ¢ > 0 there exists ng € N such that for n > ng:

‘Tgn(f) —T%(f)’ <e. (3.91)
This, together with Eq. (3.87)), implies that:
T,, = T. (3.92)

Next, we discuss the solution of the free Schrodinger equation in the sense of distributions.
We say that ¥(t) € C*° (R, S'(RY)) is a distributional solution of the Schrodinger equation
if: q )

i (Lvt)ss = (f,—580(1))s.s (3.93)
for all functions f € S(R?).
Proposition 3.43. Let o9 € S'. Then, there exists a unique, global solution (t) €
C*(Ry, S'(RY)) of the Schridinger equation, given by
1 —ilk2y
B(t) = Fle Mt Fyy (3.94)

Proof. By Lemma and by the fact that F and F~! are maps from S’ to S, we know
that 1(t) € S'(R%). To conclude, we show that 1(t) is a solution of the Schrodinger equation

17



in the sense of distributions. Let f € & be a test function. Then:

.d
l%(

= (Fe™*

ey
Fe " F T U bo)s, s
LI t‘k|

Sl u)ss =
F ' o).
- <—fe—i%tf— AL v0)s.s
= (RALF T Fy)s s
= (f,—§A¢(t))s,s'~ (3.95)

The regularity in time of the mapping ¥ (t) : S — C can be easily checked. ]

3.4 Long time asymptotics of the momentum operator

We have proven that, for iy € S, the solution of the free Schrédinger equation is given by:
1 du 55 2
t,r)= ——r B . 3.96
0(t.2) = s | e F vuly) (3.96)
The probability for finding the quantum particle in the region A = R? is given by:
P(X(t) € A) — f lo(t, 2)[2 dx (3.97)
A

Next, we want to determine the “velocity distribution” of the quantum particle. Since the
velocity at a fixed time is not defined in standard quantum mechanics, we shall consider the
asymptotic speed for large times, which we define as:

Tim P(@m) Jim P(X(t) € t4) = Jim | [u(t,2)P do . (3.98)

t—0 t—o0 tA

Notice that choice of the origin of the reference frame does not play any role. To get an
expression for the above limit, we shall use the next lemma.

Lemma 3.44. Let 1)(t) be the solution of the free Schriodinger equation, with 1(0) = g € S.

Then: B
b(t,x) = (6)’;’/2 do(z/t) + r(t,z) (3.99)
with limy e |r(t)|z2 = 0.
Proof. We have, by Eq. (3.96)):
%1 ey (i
Y(t,z) = (:t)d/Q (2r) /2 Je ty(e 1= 1)1/10@) dy
- (:t)f;/Q (1&0( 0+ (2m)d/2 J eﬂ%y(el o 1)%(7‘/) dy)
- (jt);p (dole/t) + bt x/t)) | (3.100)
and hence: L,
r(t,z) = (;f);dtpﬁ(t,w/t) . (3.101)

To prove the claim on the L2 norm, we proceed as follows:
)Ze = 240 = ~ [ 1A 2de = | |h(t,y)Pdy = | |h(t,y)dy . (3.102
H?‘(t, )HL2 - |T(ta (E)| €T = td | (tﬂ (E/t)| L= ‘ (tvy)‘ Yy = ‘ (tvy)‘ Y- ( . )
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Now, notice that h(t,z) — 0 pointwise as t — 00. Also, |h(t,x)|* < 4|¢oo(z)|?. Therefore, by
dominated convergence theorem:

thnolojm(t,x)ﬁdx =0. (3.103)
This concludes the proof. L]

Theorem 3.45. Let ¢(t,x) be a solution of the free Schrédinger equation and let A < R?
measurable. Then:

. X() Vi _ ; 2
tli)HOIOP(T e A) —: Jim P (tA) = L o (p)[2dp . (3.104)
Proof. By Lemma [3.44] we have:
1 . .
| wtopas= 5 | tive/Pde RO = [ Wo)de+ RO, (3109
tA tA A
where, following the proof of the Lemma:
1 _—
. o 2 : il
lim R(f) = Jim LA r(t,)[* dz + lim 2Re (td L ) 1/;0(x/t)h(t,x/t)d:c>
— Jim 2Re( L To)h(t.p)) (3.106)
By the Cauchy-Schwarz inequality we have:
Jim | | o)t p)d| < Jim ol o)1 =0 (3.107)
—0 tA t—0
]

Remark 3.46. o If we would not have set the mass m to 1, the probability in the left-
hand side of Eq. should have been replaced by P(mX (t)/t € A). Therefore,
the above result allows to control the asymptotic distribution of the momentum of the
quantum particle.

o The operator P := —iV, is called the momentum operator. The expectation value of
the momentum operator is given by:

BY(P) i= G Py = | D) (PO)ta)de = | D odmdto)dp = | pli0.0)Pdo

(3.108)
where we used that |Y(t,p)| = [P(0,p)|. Thus, the quantum mechanical expectation
value of the momentum operator is equal to its expectation value with respect to the
asymptotic momentum distribution.

3.5 Properties of Hilbert spaces

Recall the definition of Hilbert space, given in Section In this section we shall spell out
some important properties of Hilbert spaces, that will play a role in the following discussion.

Definition 3.47. Let H be a Hilbert space. A sequence () in H is called an orthonormal
sequence if {Ln, Pm) = On.m.-

The next proposition is an immediate consequence of notion of orthogonality.

Proposition 3.48. Let (¢;)jen be a orthonormal sequences in H. For any ¢ € H, let us
rewrite:

v = i<%>w>%+(¢—i<ww>w)

= Pt (3.109)

Then, (n, ) =0 and:
W, ) = Wy on) + s ) - (3.110)
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Proof. Exercise. L]

Proposition [3.48] implies the validity of two important inequalities, the Cauchy-Schwarz
inequality and the Bessel inequality.

Corollary 3.49. (a) Let (¢;)jen be an orthonormal sequences in H. Let ¢ € H andn € N.

Then: .
lv]? = Z s, V)2 (Bessel inequality). (3.111)
j=1
(b) Let ¢,9p € H. Then:
Ko, )| < |ellvll (Cauchy-Schwarz inequality). (3.112)

Proof. Eq. (3.111) immediately follows from Proposition Eq. (3.112) follows from Eq.
(3.111)), after choosing w1 = ¢/||¢| and n = 1. u

Proposition 3.50 (Polarization identity.). Let H be a Hilbert space. Let v, € H. Then:

1
.y =(le+ VI =l = 9I* —ilo + iw)* +ilp —iw]?) . (3.113)

Proof. Eq. (3.113]) follows from the following identity, valid for any sesquilinear fornﬂ B:
X x X — C, with X a complex vector space:

1
B(z,y) = Z(B(m+y,x+y)—B(x—y,x—y)—iB(x+iy,x+z'y)+iB(x—iy,x—iy)) . (3.114)
]

Definition 3.51. An orthonormal sequence (;)jen in H is called an orthonormal basis if

for all e H:
D RCIROTIS (3.115)

J=1

Remark 3.52. Notice that the series converges in H. In fact, by Bessel’s inequality,

D7 K b < v .
j=1

Thus, lim,,_, o Z?Zl [{pj,1)|? exists. Consider the sequence of partial sums (Z?:1<<pj, 1/)><pj).
Let n' > n. We have:

H i@j,wm— - i<<ﬁw¢>%|2 = i Kej o), (3.116)

which vanishes as n — 00. Hence, (Z?:1<<pj,w>cpj) is a Cauchy sequence in H. Being H
complete, 3,77 (5, U )p; € H.

Definition 3.53. A topological vector space is called separable if it contains a countable,
dense subset.

Proposition 3.54. A Hilbert space is separable if and only if it contains an orthonormal
basis.

YA map B: X x X — C is called a sesquilinear form if it is linear in the second variable and antilinear in the
first variable.
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Proof. Let (¢;) be a ONB. Then, the following set is a dense and countable subset of H:
N
spang, ,oip; | € N} := { E(Qj +ibj)p; |INeN, a;,bje Q} . (3.117)
j=1

Let us now prove the converse statement. Suppose that (¢;)jen is a dense and countable
subset of H. Let (¢;)jes S (9;)jen be a subset of linearly independent vectors in (¢;)jen,
dense in H. This subset can be used to define a ONB, via the Gram-Schmidt method. L]

Proposition 3.55. Let (p;) be an orthonormal basis for H. Then, the following inequality
holds true:

|| = Z [<pj, )[? (Parseval equality.) (3.118)

Jj=1

Proof. Eq. (3.118]) immediately follows from the definition and the continuity of the scalar
product:

lvl?

N M
< m > s 0y, lim > e, ¢><pi>
Jj=1 i=1

N—00 M—o0

N M N
= dim Tim (3 05 Ypn vy = lm S G0 (3.119)
j=1 i=1 j=1

Remark 3.56 (/* as a coordinate space for a separable Hilbert space.). Let (¢;) < H be a
ONB. Then, the Parseval equality implies that the following mapping is an isometry:

U:H— (%, @ ({(pj,1))jen - (3.120)

. 2 . . o0 .
In particular, for each sequence c € £* we can associate a series 2j=1 cj;, which converges
in norm:

[e¢] 2 0
H Z Cj%‘H = Z lcj|> — 0 as N — oo; (3.121)
j=N j=N

this means that U is also surjective, i.e. it is an isometric isomorphism. Therefore, each
separable Hilbert space is isometrically isomorphic to £* and each ONB generates an isometric
isomorphism. Thus, we can identify ¢2 as the coordinate space for separable Hilbert spaces
of infinite dimension.

Example 3.57. Consider L*([0,27]). It is a separable Hilbert space, and a ONB is provided

by pr(z) = \/#276“”, keN. Let v e L?([0,27]), and consider its Fourier series:

Y=Y {om e - (3.122)

k=—0o0

The Fourier series provides an isometric isomorphism between £2 and L?.
Proposition 3.58 (Characterization of an orthonormal basis.). An orthonormal sequence
(pj)jer in H is an orthonormal basis of H if and only if:

{pjsby=0 foralljel =1 =0. (3.123)

Proof. Let (p;)jer be a ONB of . Suppose that {(¢;,1) = 0 for all j € I. Then, by
definition of ONB, Eq. (3.115)), ) = 0. Let us now prove the converse implication. Let (¢;)
be an orthonormal sequence in H, and let ¢ € H. By Bessel’s inequality, we have, for all
neN:

D Kes o2 < lgll? - (3.124)
j=1
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Being the sequence n — 37, [(p;, ¢)[* nondecreasing and bounded, the n — oo limit
exists: lim,,_,q 2?21 [Kpj, o? = et Kess ¢>|?. In particular, this implies that the series
2jer{®j: @)p; is convergent in H. Consider the vector:

) =¢— (b5 - (3.125)

jel

By construction, {1, ¢;» = 0 for all j € I. By assumption, this implies that ¢ = 0, hence:

¢ = Z<¢, 0P for all ¢ € H. (3.126)
jel
Therefore, {¢;}jer is an ONB of #H. This concludes the proof. u

Definition 3.59. Let M < ‘H. We define its orthogonal complement as:
ML= {¢e%|<g@,¢>:0 for all(peM}. (3.127)

Remark 3.60. It follows that M n M+ = {0}. Also, being {p, ) linear and continuous, M+
is a closed subspace of M.

Theorem 3.61. Let M < H be a closed subspace of H. Then:
H=Me®M". (3.128)

That is, every element ¢ € H can be rewritten in a unique way as 1 = @ + = with ¢ € M
and ot e M+.

Proof. Let v € H. If 1p € M, or 1 € M, there is nothing to prove. Suppose that 1) ¢ M,
Y ¢ M+. Let (vg,) be a minimizing sequence:

: TR 2
Jim ¢ —op]” = inf o —of". (3.129)

By using that || - |2 = (-, -), we have:
[ —v|* = F(o) + [¢]* ., F(v) := [ - 2Re (¥, ) . (3.130)

Therefore, limy_, o F(vg) = infyeps F(v) =: . Our preliminary goal is to show that vy — v
in M. To prove this, we write:
F(vg) + F(v) [ox > = 2Re (b, i) + or]* — 2Re (v, vp)

1
= 5(””16 + lez + Jog — lez) — 2Re (¢, v + vy

2 1
N
Vg + U 1 1
_ 2F( = l)+§Hvk7vl|\2>2a+§\|kale2. (3.131)

Since F(vg), F(v;) — aas k,l — o, we get that |vx—v;| — 0. Being (vg) a Cauchy sequence,
and since H is complete, vy — v in H. Also, since M is closed, v € M. By continuity of the
scalar product, a = F(v). Our next goal is to show that ¢» — v € M=*. If so, this provides
one decomposition 1) = v + v, with v € M and v+ e M*L.

Let € M and let f(t) := F(v + tv). Then, by definition of v:

f(®) = F(v) = f(0), for all t € R. (3.132)

Thus, ¢t = 0 is a minimum of f(¢). In particular, f/(0) = 0. Let us compute the derivative.
A simple computation shows that:

0= f'(0) = 2Re (¢h — v, 3 . (3.133)
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Replacing v with v, we get the same identity but with Re replaced by Ran. Hence:
0=<p—v,0)y=0, for all o € M. (3.134)

In conclusion, ¥ — v € M*, as claimed; thus, 1 = v+ L v. Let us now prove uniqueness of
the splitting. Suppose there exists vy, v, € M and vi, vy such that:

Y =v +of =v2+vy . (3.135)

Then, v; —ve = vy —vi, which means that v; —ve = 0 and v{ —vy = 0, since M n M+ = {0}.
]

3.6 The Fourier transform in L2

Definition 3.62. Let X and Y be two normed spaces. An operator L : X —'Y between X
and Y is called bounded if there exists C' < oo such that:

|Lzlly < C|zx|x , forallz e X. (3.136)

Proposition 3.63. Let X and Y be two normed spaces. Let L(X,Y) be the set of the
bounded linear operators from X to Y. Let:

HLHL(X,Y) = SUPHIHX:1HL$HY . (3.137)

Then, | - |z(x,y) defines a norm on L(X,Y). Moreover, if Y is complete then L(X,Y) is
complete as well, that is it is a Banach space.

Proof. 1t is easy to check that | - |z(x,y) defines a norm on £(X,Y). Let now prove that if
Y is complete then £(X,Y) is complete as well. Let (L,,) be a Cauchy sequence in £(X,Y):

ILn = Ll ccx,yy — 0 as n,m — o0. (3.138)
Then, (L,x) is Cauchy sequence in Y, since
ILnz = Lnzly < [Ln = L cx )2y - (3.139)

Being Y complete, L,x — y €Y, as n — o0. We define Lz := y. It is easy to show that L is
a linear operator. Let us prove that L is a bounded operator. By the Cauchy property, we
have, for all € > 0, for n, m large enough:

sup |Lpz — Lpz|y <e. (3.140)

leflx =1
Therefore, dropping the sup and taking the m — oo limit:
[Lnz — Lz|y <e=|Lz|ly <C, (3.141)

uniformly in x, for all « such that |z|x = 1. This proves that L € £(X,Y). Due to the

arbitrariness of ¢, Eq. (3.141) also proves that L, — L in £(X,Y). This concludes the
proof. [

Theorem 3.64. Let X and Y be two normed spaces. Let L : X — Y be a linear operator.
Them, the following statements are equivalent:

(i) L is continuous at 0.
(i) L is continuous.
(iii) L is bounded.
Proof. (iii) = (i). In fact, let |zy|| — 0. Then, Lz, | < | L]z, — 0.
Let us now show that (i) = (ii). Let ||z, — 2| — 0 and let L be continuous at 0. Then,
L2y — L] = | L{zn — 2)] — 0.
Finally, let us prove that (i7) = (4i7). Suppose that L is continuous but not bounded: that
is, there exists a sequence (z,) with |z,|| = 1 such that ||Lz,| > n. Then, let 2, := e

It follows that ||z,| < 1, but |Lz,| = 1, which contradicts continuity. u
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Example 3.65 (Unbounded linear operators.). Let {o = {(z,) € ¢* | INeN:z,, =0Vn >
N} be the space of finite sequences, equipped with the norm |z|pn = Zfil |x,|. Then, the
operator T : Ly — Ly such that x — Tx = (x1,2x2,3x3,...) is unbounded, since |Te,| = n
but |le,| = 1.

Theorem 3.66 (Extension of densely defined linear bounded operators.). Let Z < X be
a dense subspace of a normed space X and let Y be a Banach space. Let L : Z — Y be
linear and bounded. Then, L admits a unique linear and bounded extension Le L(X,Y)
with L } z= L and )

1Ll ex,yy = 1Ll ezyy - (3.142)

Proof. Let € X. Then, there exists a sequence (z,) < Z such that |z, — z|x — 0.
Being (z,,) convergent, the sequence (z,) is also a Cauchy sequence. Thus, |Lz, — Lz |y =
|L(zn — zm)lly < |IL||llzn — 2mllx, which means that (Lz,) is also a Cauchy sequence in
Y. Since Y is complete, Lz, — y € Y. Let us now prove that the limit y does not
depend on the choice of the sequence (z,) (provided it converges to x). Let (z/,) be another
sequence in Z, such that |z}, — z|x — 0. Consider the new sequence z1, 2}, 22,25, .... By
assumption, also this new sequence converges to x, and by following the previous argument,
Lz, Lz}, Lzs, L2} ... converges to § € Y. But since every subsequence of a convergent
sequence converges to the same limit, we have y = lim Lz, = lim Lz], = g. Therefore, we
can define Lz := y. The linearity of L follows immediately from the previous construction.
The boundedness follows from:

[Zaly = lim [Lzaly < lm [Z]Jznlx = |E]l2]x - (3.143)

Therefore, L is bounded, and also continuous, by Theorem m Finally, the extension L of
L is unique: this follows from the fact that two continuous maps which coincide on a dense
subset are equal. L]

Next, we shall extend the Fourier transform on L?.

Theorem 3.67 (The Fourier transform on L2.). The Fourier transform F : (S(R?), ||| 12) —
L2(RY) can be uniquely extended to a bounded linear operator on L?(R%). Moreover, for all
felL?:

IF fllze = 1f]r2 (3.144)
and FF 1= F1F =1;..
Remark 3.68. FEq. (3.1/4) takes the name of Plancherel’s theorem.

Proof. By Theorem the space S is dense in L2. The extension of F to a bounded linear
operator on L? follows from Theorem Moreover, as proven in Theorem [3.13]

FlFls=FF 11s=1s. (3.145)

Being F, F~!,1 continuous, and being S dense in L?, Eq. (3.145)) holds as an identity on
L2 [
Definition 3.69 (Unitary operator.). A bounded linear operator U € L(H1,Hs) is called
unitary if it is surjective and isometric, that is |U|u, = |¢|n, for all e Hy.

Remark 3.70. By the polarisation identity, it immediately follows that U “preserves angles”,
that is:

<U¢7 U<P>H2 = <1/)a <)0>'H1 fOT all 2 ¢ € Hi. (3146)
Remark 3.71. The Fourier transform F : L? — L? is unitary.

As an application of the Fourier transform in L2, consider the propagator of the free
Schrodinger equation, defined in Eq. (3.50). By extending the Fourier transform to L?, the
free propagator can also be extended to an operator on L?:

Pi(t) : L2(RY) — L2(RY),  Pi(t) = Fle i5tF (3.147)
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It follows that P¢(¢) is a unitary operator, for all t € R. Moreover, it satisfies the following
composition property:

Pi(s)Py(t) = Fle s FFlem it F = Frlemis GHOF — ps 4 1) . (3.148)

Therefore, one says that P : R — £(L?) is a unitary group. In the next section we will show
that the function:

G(t) = Pi(t)ho , o € L*(RY) (3.149)

solves the Schrédinger equation in the L? sense. Before doing that, let us first check that
ViR - LXRY, o= p(t) = P(t)bo (3.150)

is continuous. By dominated convergence:

(0) — ()2 = 10 — Ptto))wnlts = [ et = e o o) Pdk 0 (3.151)

Rd
as t — tg. This proves the continuity of ¥ (t). Let us now check differentiability. Again by
dominated convergence, we see that ¢ : R — L?(R9) is differentiable if and only if:

[k[*] 3o (k)| (3.152)

is integrable, that is when |k|2¢o(k) € L2(R?). To conclude, let us discuss the continuity
properties of the unitary group P. In particular, let us consider |P;(t) — Pr(to)|lz(z2), with
|- | z(z2y defined in Proposition We have:

—ik2¢

ik ikl ik
IPt) = Pto) equey = e — ™% i _2, (3159

= sup |e
L(L%)  keRd

where we used that F is unitary, and that it leaves L? invariant. Therefore, the unitary
group P is not continuous with respect to the topology of the bounded operators. However,
one might have continuity with respect to different topologies.

Definition 3.72. Let (A,) be a sequences in L(H) and A € L(H).
(a) We say that A,, converges to A in norm if:

nlgr%o |An — Allziz) =0 . (3.154)
One writes also lim,,_,on A, = A or A,, — A.
(b) We say that A,, converges strongly (or pointwise) to A if:
nh_r)rolo |Ant) — Al =0 for all e H. (3.155)
One writes also s — limy,_, A, = A or A, > A.
(c) We say that A, converges weakly to A if:
TLILII;O [<p, (A, — A))| =0 for all v, € H. (3.156)
One writes also w— lim,_o, Ay = A or A, 5 A.
Remark 3.73. These notions of convergence verify the following chain of implications:
norm convergence = strong convergence = weak convergence. (3.157)

The reverse implications are in general not correct.
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3.7 Unitary groups and their generators

In this section we shall discuss in which sense ¥(t) = P(t)tg with 19 € L? solves the free

Schrédinger equation:
d

, 1
i () = —5A9(1) . (3.158)

As we have seen in the previous section, () is differentiable in the strong sense if |k|2¢(t) €
L?. Moreover, the distributional derivative:

L

1
- iAw(t) =F 5 »(t) (3.159)
is in L2 if and only if |k|2¢(t) € L2. Also,
[k2h(6) = k[2e™" "ty e L2 (3.160)

if and only if |k|2¢)o € L2. Therefore, if the initial datum satisfies |k|>¢o € L?, then |k|2¢(t) €
L? for all times, and ) (t) solves the Schrédinger equation in the L? sense: Eq. (3.158) holds
as an identity between L? functions.

Definition 3.74 (Sobolev spaces.). Let m € Z. The m-th Sobolev space H™(R?) = S'(R%)
is the set of distributions f € S'(R?) such that f is a measurable function and:

(14 |k[>)% feL*(RY) . (3.161)

For m >0, it follows that H™  L?.

Remark 3.75. Let us consider again the propagator of the free Schridinger equation:
L2
Pr:R— L(L?), te Pt)=F e i5lF. (3.162)

It satisfies the following properties:
(a) Py(t) is unitary for all t € R.
(b) Py is strongly continuous: t — Py(t)y is continuous for all 1 € L.
(c) Py has the group property: Py(s)P(t) = Pyt + s) for all s,t € R.
Moreover,
(d) For all g € L?, 1(t) = Ppbo is a solution in the sense of distributions.
(e) For all o € H? < L2, (t) = Pp(t)o is a solution in the L* sense: the map R 3t —
W(t) € L? is differentiable and the derivative satisfies:

d 1

i () = =3 Au() (3.163)

where —3 Ay(t) € L,
The items (a) — (¢) motivate the following definition.

Definition 3.76 (Strongly continuous one-parameter group.). A family U(t), t € R, of
unitary operators U(t) € L(H) is called a strongly continuous one-parameter group if:

(i) U:R— L(H), t — U(t) is strongly continuous.
(i) Ut +s) =U@)U(s) for all t,s and moreover U(0) = 1y.
The items (d) — (e) motivate the following definition.

Definition 3.77 (Generator of a unitary group.). A densely defined linear operator H with
domain D(H) € H is called a generator of a strongly continuous unitary group if:

(i) D(H) ={y € H | t— U(t)y is differentiable}.
(ii) For all+ € D(H) it follows that i LU (t)¢ = U(t)H.
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Example 3.78 (The free Hamilton operator.). Consider the free Hamilton operator:
1
Hy = 7§A with  D(Hy) = H*(R?) (3.164)
is the generator of the unitary group Py(t). This can easily be checked from the definition
, and from the fact that FF ' = F1F = 1.
Proposition 3.79 (Properties of the generators.). Let H be a generator for U(t). Then:

(i) D(H) is invariant under U(t), that is U(t)D(H) = D(H) for all t € R.
(i) H commutes with U(t), that is:

[H,U(#)]y .= HU®)Y —U(t)Hy =0 for allp € D(H). (3.165)
(iii) H is symmetric, that is:
(. 0y = (0, Hpy  for all o, € D(H), (3.166)

(iv) U is uniquely determined by H.

(v) H is uniquely determined by U.
Proof. (i) We notice that the map s — U(s)U(t)y = U(s + t)v is differentiable if and
only if the map s — U(s)y = U(—t)U(s + t)y is differentiable. The derivative of the

first map at s = 0 is: (—¢)U(¢t)Hv. The derivative of the second map at s = 0 is:
(—i)U(—t)U(t)Hv. Thus, ¢ € D(H) if and only if ¢ € U (t)D(H).

(ii) Let ¢ € D(H). Then:

U HY = Ui Us) lsmo= i UDU () o= iU (U (0 [smo= HU()3
(3.167)
To get the third equality we used that U(¢)U(s) = U(t+s) = U(s)U(t), and that U(¢t)y
is in D(H), by what we proved before.

(iii) By unitarity, {1, ) = (U(t)y,U(t)p) for all 1, ¢ € H. Therefore,

0 = W9 = LU U0 = (—HUS,Ut)e) + U, ~iHU (1))
= KUY, U0 ~ iU, UM HS) = iKH, ¢) i, He) . (3.168)

(iv) Suppose that U(t) is generated by H. Then, by symmetry of H:

20 (J0l? — Re U (1), D))
= —2Re ((-iHU ()0, U()w) + U (), ~iHU (£)0))

= —2Re (iCHU (00, T () — iU (t), HU (1))
- 0, (3.169)

d ~ 2
Zl@®) - U@l

for all 1 € D(H) (for the second term, we actually use that U(t)D(H) = D(H)). Eq.
together with U(0) = [7(0) = 1, implies that U(t) | pm)= ﬁ(t) [ oy for all
t € R. Moreover, from W = H (recall that, by definition, the generator H is densely
defined in H), we conclude that U = UonH.
(v) This is an immediate consequence of the definition of H.
|

Example 3.80 (Translations as unitary groups on L?). (a) Let T(t) : L*(R) — L*(R)
with ¥ — (T(t)Y)(x) := Y(x —t) be the group of translations. It follows that T(t) is
a strongly continuous unitary group, generated by Do = —i%, with domain D(Dy) =
H'(R).
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(b) The definition of the translations on L?([0,1]) is a bit more delicate. Let 0 <t < 1
and 6 € [0,2m). We define:

CIODIOEE B R g v (3.170)

This definition allows to define the translation to the right for all t = 0. Intuitively,
whatever “exits the interval [0,1] from the right”, “comes back from the left” with a
phase factor €. One can easily check that Ty(t) is unitary, and that it satisfies the
group composition property. However notice that for 8 # 6" one has Ty(t) # Ty (t) for
t # 0: different phase factors produce different translation groups. Thus, according to
Proposition[3.79, these groups must have different generators.
However, for t small enough the function (Tp(t)1)(x) does not depend on 0: how can
this be, if the generators of Ty, Ty (t) differ for different 0, 0'? The difference lies in
the domains of Dy, which differ for different values of 6. One has Dy = —i%, with
domain:

D(Dy) = (e H([0,1]) | (1) = (0)} . (3.171)
One can check that D(Dy) is invariant under Ty(t), and that Dy is the generator of
Tp. Here, H([0,1]) is the local Sobolev space, defined as follows:

H([0,1]) := {p € L([0,1]) | such that there exists o € H'(R) with ¢ Mo,11= ¥} -
(3.172)
As we will prove later HY(R) < C(R), which means that the pointwise constraint in the
definition of D(Dy) makes sense.

Remark 3.81. The operator —i% equipped with the maximal definition domain D4, =
H([0,1]) does not generate any unitary group, since H' is not invariant under Ty. The
same is true if one chooses a too small domain, for instance Dy, = {¢ € H([0,1]) |
$(0) = (1) = 0}.

Remark 3.82. For 1, p e H([0,1]) it follows that:

Wiy = | V@ -igopl@) = @) - DORO) + | do (-igv@)e()

0
= i) — F0)R(0)) + (i) (3173

That is, the operator —i% on Dyax is not symmetric. As we shall see later, this implies
that —i% is not a generator. Instead, —i% on Dy and on Dy, is a symmetric operator,
since the boundary term in Eq. vanishes. However, —i% is a generator only if
defined on Dy. The symmetry of the operator is a necessary but not sufficient condition to
define the generator of a unitary group.

Before discussing further how to characterize the generator of a unitary group, we con-
clude this section by discussing a regularity result for functions in Sobolev spaces.

Lemma 3.83 (Sobolev.). Let £ € Ny and f € H™(R?) with m > £+ 4. Then, f e C*(R?)
and 0° f € Coo(RY) for all |a| < £.

Proof. We will prove that k® f(k) € L' (R%) for all a € N¢ with |a| < £. Then, 0*f € C,(R%)
follows thanks to the Riemann-Lebesgue lemma, Theorem

From the definition of H™ one has (1+|k|?)™/2f(k) € L*(R?), and therefore for all a € N¢
with |a| < ¢

| wedwrar < [ @ im)a
Rd Rd
= [ R k)
R4
. 1 1/2
< |+ R (K J —————dk 3.174
I+ P20 eemo (| gedh) o+ (317)
where in the last step we used the Cauchy-Schwarz inequality. The last integral is finite if
and only if 2(m — ¢) > d. |

28



4 Selfadjoint operators

4.1 The Hilbert space adjoint

Let V and W be normed spaces and A € L(V,W). Then, the dual spaces V' and W’ are
Banach spaces and one can define the adjoint operators A’ : W’ — V' for w’' € W

(A'w")(v) := w'(Av) forallve V. (4.1)

Therefore, A’ € L(W', V') and from the Hahn-Banach theorem one also has | A’| = ||A|. For
Hilbert spaces, it follows that H’' =~ H, which means that if A € £(H) then A’ € L(H') can
also be seen as an operator in £(#). We shall clarify these points in the following.

Theorem 4.1 (Riesz). Let H be a Hilbert space and T € H'. Then, there exists a unique
Y1 € H such that:
T(p) = Y1, 0)n for all p € H. (4.2)

Proof. Let T € H'. We would like to prove that T can be understood as a “projection” over
a vector ¢y € H. If so, we can think M := Ker(T) as being the orthogonal complement of
. Since T is continuous, M is closed. If M = H then T = 0 and ¥y = 0 provides the
required vector.

Suppose that M # H. Then, we claim that M~ is one dimensional. Let g, 1, € M+\{0}.

Let a := ;gﬁ‘f; We have:

T(ho — apr) = T(ho) — aT'(p1) = 0. (4.3)

That is, 19 — apy € M n M+ = {0}, which proves that 19 = a1}, and hence that M* is
one-dimensional. Now, by Theorem [3.:61] for any ¢ € H there is a unique splitting:

(o, ©)

Y =9YMt+Pur =Mt TNE Yo , (4.4)
where the last step follows from the fact that dim(M~*) = 1. Now, let 97 := ﬂ)’fﬁ’g . We
have:

(o, ) T(4ho)
T(SD) = T(<)0M + ”¢0H2 1/}0) = <'¢)Oa<)0> HwOHQ = <7/)T790>3 (45)

where the second equality follows from the linearity of 7', and from the fact that ¢y € Ker(T).
This proves the claim (4.2)). The uniqueness follows from the definition of scalar product. ®

Riesz Theorem, together with the next proposition, shows that # and H’ are isometrically
isomorphic. In other words, H is selfdual.

Proposition 4.2 (Selfduality of Hilbert spaces). Consider the map:
J:H->H, o Jpi={p,). (4.6)
J is a linear map. Moreover, J is an isometry:
1ol = el - (4.7)

Remark 4.3. Theorem proves that H and H' are isomorphic. Proposition @ proves
that the isomorphism that associates to an element of H an element of H' is an isometry.

Proof. The linearity of J immediately follows from its definition. Let us now prove Eq. (4.7).
We have:

ol = sup 2EW
YeEH HwHH

» K@)l

vert [ ¥ln
= el (4.8)

since [{p, )| < [o]|1] by Cauchy-Schwarz inequality and (g, ¢) = [¢?. m
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Definition 4.4 (Hilbert space adjoint). Let A € L(H). The Hilbert space adjoint operator
A* . H — H is defined as:

A¥ =J7tA T . (4.9)
Proposition 4.5. For A€ L(H) it follows:
W, Apy = (A%, ) for allh,peH. (4.10)

This relation defines A* uniquely.

Proof. By the definition of A* it follows that:

(W, Ap) = JY(Ap) = A'Tp(p) = JTTTA'Th(p) = JA™P(p) = (A%, ¢) . (4.11)

Also, the map ¢ — (1, Ap) is continuous and linear. Therefore, by Theoremthere exists
a unique vector 1 € H with (¢, Ap) = (n, p) for all p € H. This proves uniqueness of A*. =
Theorem 4.6 (Properties of the Hilbert space adjoint). Let A, B € L(H) and A € C. Then:
(i) (A+ B)* = A* + B* and (AA)* = A\A*.
(i) (AB)* = B*A*.
(iii) |A*| = [ Al.
(iv) A** = A.
(v) |AA*| =[A*A| = | A|>.
(vi) Ker A = (Ran A*)*+ and Ker A* = (Ran A)*.

Proof. (i) — (4i7) follows immediately from the definition of Hilbert space adjoint. The
property (iv) follows from:

W, Ap) = (A%, p) = (@, A*tp) = (A**p,ap) = (P, Ay forallp,pe H. (4.12)

The property (v) follows from:
|Ap)? = (Ap, Ap) = (p, A* Ap) < |0|*| A*A] (4.13)
therefore:

|Al* = sup [|Ap|* < |A*A] < [A*[|A] =] AJ* . (4.14)

lel=1

To conclude, the property (vi) follows from:

peKerA < Ap=0

— (@, Apy=0 forallypeH (4.15)
— (A% =0 forall peH (4.16)
«— e (RanA*)"*. (4.17)

]

Example 4.7. Let T : (> — (2 be the right shift, (x1,72,...) — (0,21, 22,...). We have:
[ee] 0
(x,Tyy = Z TjYji—1 = Z zjy; = {T*z,y), (4.18)
j=2 j=1
with T* the left shift operator, (x1,x2,...) — (x2,x3,...). Notice that the rightshift is

isometric, but not surjective and hence not unitary. It follows that T*T = 1, but TT* # 1.

Proposition 4.8. U € L(H) is unitary if and only if U* = U~ L.
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Proof. Suppose that U is unitary. Then:

(U*UY =, @) = (Uh,Up) = (h,pp) =0 for all ¥, p € H. (4.19)

Therefore, U*U = 1. Since U is surjective, for any ¢ € H there exists ¥ € H such that
U:{/}_z ('0,'1 Also, UU*p = UU*Uy = Uty = ¢. This implies that UU* = 1. That is,
v gugpos.e now that U* = U~!. Then, U is surjective, and moreover:

U, Uy = UV, 9y = U™ U, ) = (o, 9y - (4.20)
This proves that U is unitary. u

Definition 4.9 (Bounded selfadjoint operator). A € L(H) is called selfadjoint if A = A*.
Proposition 4.10. Let A€ L(H). Then:

A is selfadjoint <= A is symmelric. (4.21)
Proof. The proof immediately follows from Proposition [4.5 L]

Remark 4.11. In general, for unbounded operators the implication < does not hold true.

Theorem 4.12 (Bounded generator.). Let H € L(H) with H* = H. Then, the operator
0 .
_iHt (—iHt)™
e 3, LR (4.22)

defines a unitary group with generator H, with D(H) = H. Moreover, the map R — L(H) :
t — e~ Ht s differentiable.

Proof. Exercise. [

Definition 4.13 (Unbounded operators.). (a) An unbounded operator is a pair (T, D(T))
of a subspace D(T') < H together with a linear operator T : D(T) — H. If D(T) = H,
we say that T is densely defined.

(b) An operator (S, D(S)) is called an extension of (T, D(T)) if D(S) > D(T) and S | p(ry=
T. We say that T < S.

(¢) An operator (T, D(T)) is called symmetric if for all p,¢ € D(T) it follows that:

o, Ty = To,yu - (4.23)

Example 4.14. The free Hamilton operator Hy = —1A on D(Hy) = H*(R?) is a symmetric
unbounded operator, densely defined.

As we have seen in Example the solution of the Schrodinger equation generated
by a symmetric operator H might leave D(H), if D(H) is chosen too small. We would
like to understand what is exactly missing to imply that a given symmetric operator is the
generator of a unitary group. Let (Hy, D(Hp)) be a symmetric operator, and let (Hy, D(H))
be a symmetric extension. Suppose that the equation:

d

(1) = H(t) (4.24)

with initial datum ¢ (0) € D(Hy) has, at least for small times, a solution (¢) that belongs
at least to D(H;) but not to D(Hyp). The question we ask is where does 1 (t) go after leaving
D(H,). For ¢ € D(Hy) € D(H,) it follows that:

(Hip(t), ) = (1), Hip) = C(t), How) - (4.25)

Therefore, if 1(t) does not belong to D(Hj), then it is at least in the domain of the adjoint
operator H, defined as follows.
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Definition 4.15 (The adjoint operator). Let T be a densely defined linear operator on a
Hilbert space H. Then, the domain D(T*) of the adjoint operator T* is defined as:

D(T*):={peH|IneH st (Y, Toy={n0yVoe D(T)}. (4.26)
Since D(T) is densely defined, n is uniquely defined and we define, for all p € D(T*):
T*:D(T*) > H, h—T*:=n. (4.27)
Remark 4.16. By Theorem[[.1], Definition[].15 is equivalent to:
D(T*) :={eH|p— Y, Tp)is continuous on D(T).} (4.28)

Proposition 4.17. (T*, D(T*)) is a linear (not necessarily densely defined) operator and:

b, Ty = {T*Y, @) for all+ e D(T*) and p € D(T). (4.29)
Proof. Tt immediately follows from Definition u

Definition 4.18 (Self-adjoint operator). Let (T, D(T)) be a densely defined linear operator.
If D(T*) = D(T) and T = T* holds true on D(T), then we say that (T, D(T)) is a selfadjoint
operator.

Example 4.19. In order to clarify the above definition, let us come back to Ezample [3.80

(a) Let us consider first Dyin = —i% with:
D(Dyin) = {p € H'([0,1]) | p(0) = (1) = 0} . (4.30)

For ¢ € D(D ) we have:

1

0. Do) = [ T~ i @) = [ o (~iv@)elw) = i)
— () (431)

provided ‘L e L2([0,1]), which is implied by 1» € H'([0,1]). Therefore, one has
D(D#,.) = H'([0,1]) 2 D(Dymin) which implies that Dy, is not selfadjoint.
(b) Let Dy = —idL with:

D(Dg) = {p € H'([0,1]) | e“(1) = ©(0)} . (4.32)

One has, for p € D(Dy):

Do) = [ wT@( i)

0

— i@O)0) - D) + |

1

[T d
(=i (@) )elw) = (igoen )
= e, (4.33)

provided that v € H([0,1]) and that:
$(0)p(0) = ¢ (1)e(1) = 0 — —=="—t=e". (4.34)
It follows than that D(D}) = D(Dg) and that D = —i-L = Dy. That is, Dy is

—id
selfadjoint.

Theorem 4.20 (Generator of a unitary group). A densely defined operator (H, D(H)) is a
generator of a unitary group U(t) = e~ if and only if H is selfadjoint.
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Remark 4.21. The Spectral Theorem, to be stated later, will imply that every selfadjoint
operator generates a unitary group. The converse implication, that is that every unitary
group is generated by a selfadjoint operator, is called the Stone Theorem. Both will be proven
later; Theorem [[.20 will then follow as an immediate corollary.

Definition 4.22 (Direct sum of Hilbert spaces). Let H1 and Ha be two Hilbert spaces. Then,
their direct sum is defined as:

H1 @Hz = Hl X Hz s (435)
equipped with the scalar product
oy Drans = (o1, Yu, + (b2, Yomu, - (4.36)

Remark 4.23. (H1 ® Ha, ", Yr.@n,) is a Hilbert space.

Definition 4.24 (Graph of an operator, closed operator, closure). (a) The graph of a lin-
ear operator T : D(T') — H is the space:

I(T) = {(p,Te) e HOH | pe DT} c HOH . (4.37)

(b) An operator T is called closed if T'(T) is a closed subspace of H® H.

(c) An operator T is called closable if it admits a closed extension. In this case, the smallest
closed extension T is called the closure of T.

Remark 4.25. [t is easy to see that:
I(T) =T(T) . (4.38)

Remark 4.26. Therefore, an operator T is closed if for every sequence (p,) < D(T) such
that @, — ¢ and T, — n in H, then p € D(T) and Ty = 1.

Theorem 4.27 (The adjoint of an operator is always closed.). Let (T, D(T)) be densely
defined. Then, T* is closed.

Proof. We shall show that I'(T*) is a closed subspace of H®H. To do this, let us first notice
that:

() eT(T*) <« (&,Te)=n,p) forall pe D(T)
= (U, Tey—{n,p)=0 for all p € D(T) (4.39)

= {(¥n),(-Te,o))uen =0  forallpe D(T).  (4.40)
Let us introduce the unitary map:
W HOH>HOH: (p1,92) = (—p2,¢1) - (4.41)

Therefore, we rewrite Eq. (4.39)) as:

(%77) € F(T*) = <("/}7n)1 ¢>H@'H =0 forall ¢ € W(F(T)) (442)
That is, I'(T*) = (W(I'(T)))*. Being the orthogonal complement a closed set, it follows
that I'(T*) is closed and hence that T* is a closed operator. u

Proposition 4.28 (Extension of symmetric operators via their adjoint). A densely defined
operator T' is symmetric if and only if T < T*.

Proof. If T is symmetric, it follows that D(T) < D(T*), because for every 1» € D(T) one
can set n = T =: T*1). Conversely, if T < T*, then for every ¢ € D(T) < D(T*) we have

@, Ty = {T*p, ) = (T, p) for all p € D(T). u

Remark 4.29 (Symmetric operators are closable). Since for symmetric operators one has
T < T* and T* is closed, then the symmetric operators are always closable.
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Remark 4.30. For general symmetric operators T', the identity T = T* does not have to be
true. In fact, it is not difficult to see that T is symmetric, while T* may not be.

Proposition 4.31. Let T be densely defined and T < S. Then, S* c T*.

Proof. With the notation of the proof of Theorem one has I'(S*) = (WT'(S))*. Since
T < S, one has I'(T") < I'(S), and also WI'(T) ¢ WT'(S). Hence:

[(S*) = (WIL(S))*t ¢ (WI(T))* = T(T*) . (4.43)
]
Proposition 4.32. Let T be densely defined and closable. Then, T* is also densely defined.

Proof. We shall prove that D(T*) is dense in H by showing that D(T*)t = 0. Let n €
D(T*)*. Then (recall that the orthogonal complement is a closed set):

(7,0) e T(T*)* = (WI(T))* = WI(T) . (4.44)

Since WI'(T') = {(=T'w, ) | ¢ € D(T)}, there exists a sequence (p,) in D(T') with ¢, — 0,
such that —T'¢,, — 1. Being T closable, we have that T0 = n = 0. L]
Proposition 4.33. Let T densely defined and closable. Then:

(a) T** =T.

(b) (T)* = T* = T***,
Proof. Being W unitary, it follows that for every subspace M < H @ H then W (M*') =
(W(M))*.

(a) We already know that T'(T*) = (WT(T))*. Replacing T with T* we have:

D(T**) = (WD(T*))*" = (W((WD(T))"))* = WoW(D(T)*) = -I(T) = -I'(T) = I'(T) .
(4.45)
(b) Thanks to the previous equality it turns out that T = T***_ Moreover,
D(T*) = (WI(T))* = WI(T) = (WL(T))* = I(T*).. (4.46)
|

4.2 Criteria for symmetry, selfadjointness and essential selfadjoint-
ness

Selfadjoint operators play an important role in quantum mechanics, since they are the only
operators that can generate time evolution. Nevertheless, we would like to have criteria that
allows to check whether a given operator is selfadjoint. Before doing this, let us discuss a
simple criterion to determine whether an operator is symmetric.

Lemma 4.34 (Criterium for symmetry). Let T' be a linear operator on a complex Hilbert
space H. Then:

{p, TeyeR forallpe D(T) <= T is symmetric. (4.47)

Proof. The fact that T is symmetric immediately implies that (¢, Tp) € R, since (¢, Tp) =
(Tp,p). Let us now prove the converse implication. Suppose that {©,Ty) € R for all
v € D(T). We would like to show that

(o, TYy =(Tp,¢p)  forall ¢, € D(T). (4.48)

Consider the identity:
(p, Ty = (4.49)
i(@ T+, T(p+¥)) = (o=, T(p =) — e+ i), T(p + i) + i — i), T(p — ih)))
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Let us take the complex conjugate of both sides, recalling that, by assumption, (¢, Ty) € R
for all ¢ € D(T"). We have:

(o, TY) =T, p) = (4.50)
i(@ + 0, T +9)) —<p =, T(e =) + o + i), T(p + iv))) — ip — i), T(p — 1)) -
Therefore, interchaging ¢ with ¢:
<1T<p, Py = (4.51)
Ko+, T(e+v)) —Lp =, T(p — b)) + (¢ + i, T(¢p + i)y — i —ip, T(¢ — ip)))

4
1
= 1K+ Tlo+9) = <o =9 T =) + i) — ¢, T — 9)) = Kip + 0, T( + ¢)))
=, T)
where the last step follows by comparison with Eq. . L]

Example 4.35. (i) Let f : R — C measurable. Consider the multiplication operator
(Ap)(z) = f(x)Y(x), for all p € D(Ay) = {¢p € L*(R) | fy € L*(R)}. We then have
that Ay is a symmetric operator if and only if f(x) is real valued.

Let us compute the adjoint of A}. To begin, notice that D(Ay) is dense in L?(R). This

follows from C*(R) = D(Ay) < L*(R). The adjoint operator on D(Ay) is given by:

(AFY)(x) = fx)i(x) . (4.52)
Thus, A? = Ay if and only if f is real valued.
(ii) Consider the distributional Laplacian —A on H*(RY). For all ¢ € H*(R?) < L?(RY):

(P, =Dy = (Fp, F — AF T Fy) = J.dk lh(k)|*k e R . (4.53)

Hence, —A is a symmetric operator.

Sometimes, one has to deal with non-closed symmetric operators. Of course, these oper-
ators cannot be self-adjoint (self-adjoint operators are always closed). The relevant question
here is whether the closure of a symmetric operator is selfadjoint.

Definition 4.36 (Essentially selfadjoint operator). A symmetric, densely defined operator
is called essentially selfadjoint if its closure is selfadjoint.

Corollary 4.37. A symmetric, densely defined operator T is essentially selfadjoint if and
only if T* is symmetric. In this case T = T* and T is the unique selfadjoint extension of T.

Proof. Suppose that T* is symmetric. We would like to show that (T)* = T, that is T is
essentially selfadjoint. By Proposition m (b), (T)* = T*, hence it is enough to check that
T* = T. By Theorem T* is closed. Moreover, being T' symmetric, by Proposition
T < T*. Thus, T < T*. To conclude, we would like to show that 7% — T. We claim that
T*** — T** If so, by Proposition we have: T* = T#** < T** — T which proves
that T* < T and hence that T* = T. The claim T%** c T** follows from the fact that, for
T symmetric, T** < T*. In fact: by Proposition (b), we have T* = (T)*; since T is
symmetric and densely defined, (T')* = T, by Proposition finally, Proposition (a)
implies that T = T%*.

Now, suppose that T is essentially selfadjoint. Then, T is selfadjoint, and in particular
symmetric. Moreover, T* is symmetric as well, since, by Proposition T = (T)* =T,
where the last equality follows from the definition of essential selfadjointness.

To conclude, we have to show that 7T is the unique selfadjoint extension of 7. Suppose
that S is another selfadjoint extension of T. Then, T' < S implies that T = § = S (since,
by Theorem [4.27] selfadjoint operators are closed). The reverse implication follows from

Proposition S=S*cT*=T,ie S=T. L]
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Definition 4.38. Let (T, D(T)) be a selfadjoint operator. A subspace Dy < D(T), dense in
H, is called core of T if (T, Dyg) is essentially selfadjoint, that is if:

Tlp,=T. (4.54)

Remark 4.39. Equivalently, Dy is a core for (T, D(T)) if and only if Dy is dense in D(T)
with respect to the graph norm:

lel2ry = 1Tel3 + el - (4.55)

Example 4.40. (a) As we have seen in E:z:ample the operator (—i-L. D) is sym-
metric but not selfadjoint. Let us check whether it is essentially selfadjoint. To do so,
let us compute the closure of the operator, and check whether the closure is selfadjoint.

Being T = —i% symmetric on its domain, we know that T = T** < T*. Therefore,
for all € D(T*) = H'([0,1]) and all ¢ € D(T), recalling that T < T* = —i-:
0 = @, Typ)—<{T*,p)
. d . d . —= —
= i — i) = ipOP0) - pPM], (456)

which implies that (0) = ¢(1) = 0 (because ¢ € D(T*) = H'([0,1]) does not need
to satisfy any boundary condition). We conclude that D(T) < {1 € D(T*) | 4(0) =
(1) = 0} = Dyin. On the other hand, it is easy to check that every 1 € H'([0,1])
with ¥(0) = (1) = 0 is also in D(T**) = D(T). In fact, for any 1) € Dy and any
p e D(T*) = H'([0,1]), integrating by parts:

b, T* ) = (¥, fi%@ = <*Z’%¢, o) =:{n,¢), (4.57)

with n € L*(R) given by —i%w. Therefore, D(T) = Dyin, and Tt = —i%w for all

€ D(T). Hence, T is a symmetric operator on D, but not selfadjoint; that is
(T, Dyin) is not essentially selfadjoint.

(b) We already know that (71'%,1)9) is selfadjoint. Hence, it is in particular essentially
selfadjoint.

The distinction between closed symmetric operators and self-adjoint operators may seem
just a technicality, but it is actually very important. The spectral theorem, which plays
a very important role in quantum mechanics, only holds for selfadjoint operators, not for
general closed symmetric operators. Similarly, only selfadjoint operators, and not general
closed symmetric operators, generate a unitary evolution. Unfortunately, while it is easy to
check whether an operator is symmetric, it is much more difficult to decide whether it is
selfadjoint; we need criteria to prove selfadjointness. The basic criterium is stated in the
following theorem.

Theorem 4.41 (Criteria for seldadjointness). Let (H,D(H)) be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is selfadjoint.

(i1) H is closed and Ker(H* +1i) = {0}.

(i11) Ran(H +1i) =H.

Proof. (i) = (i1). Let H be selfadjoint. Then, H is closed (since H* is closed, Theorem
[4.27). Let ¢4 € Ker(H* +4). Then, Hpt = Fipy. Since the eigenvalues of a symmetric
operators are always real, it follows that ¢4+ = 0.

(#i) = (vit). This implication will be postponed to the next lemma.

(#i7) = (i). Being H symmetric, it follows that H < H*, by Proposition We are
left with showing that H* < H. To this end, let v € D(H*). Then, by the assumption
Ran(H =+ i) = H, there exists ¢ € D(H) such that

(H* — iy = (H—i)p . (4.58)



By H — H*, it also follows that:
(H* —i)y = (H* —i)p, (4.59)

that is ¢ — ¢ € Ker (H* — i). As the next lemma will show, this implies that ¢ — ¢ = 0,
that is ¢ = ¢ € D(H), which shows that D(H*) c D(H). Also, by Eq. (4.58), H = H* on
D(H), which concludes the proof. u

Lemma 4.42. Let (T, D(T)) be densely defined. Then:
(a) For all z € C it follows that Ker (T* + 2) = Ran (T +%)*. In particular:

Ker(T* £2)={0} < Ran(Ttz)=H. (4.60)

(b) If T is closed and symmetric, then the sets Ran (T + 1) are closed.

Remark 4.43. Let us check how this lemma allows to conclude the proof of Theorem -
Let us check that (i1) = (iii). Eq. implies that: Ker(H* +1i) = {0} = Ran(H +1i) =
H. Finally, being H closed and symmetric, item (b) above implies that Ran H is closed. This
proves the implication (ii) = (i14).

To conclude the proof of the implication (iii) = (i) above, we have to show that (iii)
implies that Ker (H* — i) = {0}. Since Ran(H + i) < Ran(H t1), and Ran(H +1i) = H
by assumption, Eq. implies that Ker(H* — i) = {0}, which concludes the proof of
Theorem [{.71]

Proof. (of Lemma [4.42]) To prove (a), notice first that (T + 2)* = T* + Z. Then:

YpeRan (T +2)t = (&), (T+2)p)=0 forall pe D(T)
«— YeDT*) and (T*+2)p=0
— yYeKer(T*"£2). (4.61)
This proves (a). Let us now prove (b); we start by choosing +i. The proof for —i is exactly the

same. For symmetric T, it follows that (¢, Ty = (T4, ) = {p, Ty), that is (¢, TY) € R.
Therefore, for any ¢ € D(T):

1T+ a)w?

(T + i), (T + i)y = |TW|? + []* — 2Re i, Teb)
1Ty + [v)* = |¥)? (4.62)

Therefore, T + i is injective and (T +i)~! : Ran(T + i) — D(T) exists and it is bounded.
Let (1) be a sequence in Ran (T + i) such that ¢, — 9. Let ¢, := (T + i)~ '4,. The
boundedness of (T +i)~! implies that v, is a Cauchy sequence, which therefore converges
to ¢ € H. Being T closed, T'(T) is a closed set; therefore, the sequence (@, ¥,) € T'(T + 1)
converges to (¢, %) = (¢, (T +1)p) € T(T + 1), which shows that ¢ € Ran (T + i). =

Remark 4.44. Suppose that H is nonnegative, that is (1), Hy) = 0 for ally € D(H). Then,
it is not difficult to see that the condition for selfadjointness Ran(H + i) = H in Theorem

can be replaced by Ran (H + 1) = H.

From Theorem [£:41] we also obtain criteria for essential selfadjointness.

Corollary 4.45 (Criteria for essential selfadjointness). Let H be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is essentially selfadjoint.
(i1) Ker(H* +1i) = {0}.
(ii) Ran(H +1i) ="H.

Proof. Exercise. L]
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Example 4.46. (a) Let us give a simple proof of the fact that the operator H = fi% on

Dinin = {2 € H([0,1]) | (1) = 9(0) = 0} is not essentially selfadjoint, based on
Corollary[{.45. The equation:

. d .
H*¢y = —io s = Fipy (4.63)

is solved by @+ = eX% which lies in D(H*) = H'([0,1]). Therefore, Ker(H* i) # {0},
which disproves essential selfadjointess.

(b) For Hy = —A on CX(R?) it follows that D(HF) = H*(R?) and the equation
Hyptr = —Apy = Fipy (4.64)
has no solution in H?, since —A is a symmetric operator. Therefore, Ker (H§ +i) = {0}
and Hy is essentially selfadjoint on CZ(R?).

To conclude this section, let us prove that (—A, H*(R?)) is a selfadjoint operator. We
could use Theorem by checking that I'(—A) is closed. An easier proof will be provided
by the following lemma.

Lemma 4.47. Let U : Hi — Ha be a unitary operator, and (H,D(H)) be a selfadjoint
operator on Hy. Then, (UHU*, UD(H)) is selfadjoint on Hs.

Proof. Exercise. L]

Let Hy = Ho = L2(RY), H = —A and D(—A) = H?(RY). Choose U = F, the Fourier
transform on L?(RY). Then, UHU* = F — AF1 = Ay with f = k? (multiplication
operator). Being f measurable and real valued, selfadjointness immediately follows from

Example

4.3 Selfadjoint extensions

If a symmetric operator is nonnegative, there is a simple way of constructing a selfadjoint
extension via the Friedrichs extension.

Definition 4.48. A densely defined linear operator (T, D(T')) on a Hilbert space H is called
nonnegative, T > 0, if:

qr(¥) =, Ty = 0 for all+ e D(T). (4.65)
It is called positive, T > 0, if qr(¢) > 0 for all ¢ € D(T).
Remark 4.49. The functional qr(-) is called the quadratic form associated to T.
Remark 4.50. Lemma implies that every nonnegative operator is symmetric.

Proposition 4.51. Let (T, D(T)) be a densely defined, linear, nonnegative operator. Given
Y, € D(T), let {p, V) := (o, Ty +{p, ). Then, (-, ) defines a scalar product on D(T).

Proof. Exercise. [

Remark 4.52. Therefore, |- |71 := A/, )1 defines a norm on D(T). Being T nonnegative,
we have |7 = <, Tv) =y, ¥y = [[¢]*.

Definition 4.53. The completion Hr of D(T) is the set of equivalence classes of sequences
in D(T) which are Cauchy with respect to the | - |z norm. Two sequences (¢y,), (wn) belong
to the same equivalence class in Hr if | — @n|r — 0.

Remark 4.54. If a sequence is Cauchy with respect to the || - |r norm, it is also Cauchy
with respect to the | - | norm (recall Remark[{.59).

Proposition 4.55. Let [(¢n)nen] € Hr, such that p, — o € H. The map [(pn)nen] — ¢ is
well defined and injective.
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Proof. Let us start by proving that the map is well defined. Let (¢,), (¥,) be two sequences
in Hrp, with |¢, — ¥, — 0. That is, the two sequences belong to the same equivalence
class, and have the same limit ¢ in H since, by Remark [n — n| — 0. Thus, the map
[(¥n)nen] — @ is well defined.

Let us now prove that the map is injective. Suppose that (¢,,), (¢n) are two sequences
in Hp. Suppose that they converge to the same limit, |, — 1¥,| — 0. Then, we claim that
l¢on — ¥n|r — 0, that is they belong to the same equivalence class. This follows from:

H'L/)n - @n”%‘ = <1/1n — Ony Y — Pn — (wm - ‘Pm»T + <wn — Pn, Ym — ‘pm>T (4'66)
< Hwn - Spn“THwn — $Pn — (wm - @m)HT + ”(T + 1)(1% - @n)H”¢m - @m”
< Cln —n = (m — om) |z + I(T + 1)(¥n — @) [|1m — oml ,

where we used that every Cauchy sequence is bounded and that T is a symmetric operator.
For any € > 0, by choosing n,m large enough, C|v,, — on — (¥m — ©m)|r < /2. Also, for
any n we can choose m large enough so that (T + 1)(¢n, — @0 ) ||¥m — m | < €/2. Therefore,
[¥n — onl7 < e, that is [on — ¢l — 0. u

Remark 4.56. (i) This proposition is useful because it allows to identify Hr with a sub-
space Q(T) < H, by associating to each equivalence class [(¢n)n] its limit ¢ € H.
Obviously, D(T) < Q(T') < H (every element of D(T') is the limit of a sequence in Hy:
Just take the constant sequence).

(ii) The scalar product {-,-)r, originally defined on D(T), can be naturally extended to
Q(T). This is done by using the continuity of the scalar product on H, and the fact
that every element of Q(T) is the limit of a sequence in D(T). (Exercise).

Definition 4.57. The subspace Q(T) is called the form domain T. The extension of the
quadratic form gr to Q(T) is defined as:
ar(¥) = b, pyr — [ for all v € Q(T), (4.67)
where (-, )7 is the extension of the scalar product induced by T to Q(T) x Q(T).
Remark 4.58. If 1 € D(T), then qr(v) = {, TP).
Theorem 4.59 (Friedrichs extension). Let (T, D(T')) be a linear, symmetric, densely defined
operator, bounded from below by v: (i, Ty =~ for all Y € D(T). Let:
D) = DT*) QT )
Ty = T*  for ally e D(T). (4.68)
Then:
(i) T is an extension of T, and T = .
(ii) T is selfadjoint.
(iii) T is the only selfadjoint extension of T with D(T) < Q(T — ).
Proof. For simplicity, we shall set v = 0. If not, replace T' by T' — - in what follows.
(i) We claim that T' < T. By Proposition 4.28, we have that 7' < T*. Since D(T*) > D(T)

and Q(T') o D(T), then D(T) < D(T). Moreover, T =T on D(T), since T = T* on
D(T). This proves that T < T. Let us now prove that T > 0. Let ¢ € D(T), and
() < D(T) such that ¢, — ¢ and (¢,) is Cauchy in | - |p. Then:

W, Ty = lim (o, Ty . (4.69)
We further write:

(W, T

I

Wn, T*Y) (4.70)
= <T¢n7 1/)>

<T'(/)n7 "/)M> + <T'(/)n7 "/) - wm>

T by + T (W0 — ), Ym) + TP, — by =1 T+ 1T+ 111
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(iii)

Clearly, I > 0. Pick € > 0. Consider II. We have, for n, m large enough:

9
I < [[vhn = Ym7[$mlr < R (4.71)

where we used that (1,,) is Cauchy in ||| and that every Cauchy sequence is bounded.
Consider now III. We have, for m large enough:

[T < [0 = e = ol < - (4.72)

Therefore, (1), T4)) > 0

Let us now show that 7" is selfadjoint. We shall use Theorem (i7). Being T=>0T
is symmetric. Our goal is to show that Ran (T + 1) = H (recall Remark [4.44). Recall:

D(’f) ={eQ)|IneH st. (Y, Tey=<,py forall pe D(T)}, (4.73)

where the vector 7 is unique (by density of D(T') is ). From the definition (-, )1, this
is equivalent to:

D(T) ={YeQ(T)|IneH st. {Y,oyr={,py foral peD(T)}. (4.74)

Also, being D(T') dense in Q(T):

DT)={¢eQ(T)|IneH st. Wo)r={¢) forallpeQ(T)},  (4.75)

where now < -y is the extension of (-, )r to Q(T') x Q(T') (see Remark [4.56).
definition, T4 = T* = n — 1) for all 1 € D(T ) that is:

(T+1=n. (4.76)

We will show that for every n € H there exists ¢ such that Eq. holds true, i.e.
that Ran (T + 1) = H, as claimed. For any n € H, the map Q(T) 3 ¢ — (n,¢) is a
bounded linear functional on Q(T'), with respect to | - || and hence to | - |r. Thus, by
Riesz theorem (Theorem [4.1), there exists & € Q(T)) such that (n, ) = (¢, cp>T for all
v € Q(T). Comparing this equation with Eq. 1.' we find that £ € D(T). Also,

by Eq. (4.76), we have (T + 1 ¢ = 1, which shows that Ran (T’ + 1) = H; therefore,
Theorem and Remark |4.44] imply that T is selfadjoint.

To conclude, let us prove uniqueness of the selfadjoint extension. Suppose that 7T is
another selfadjoint extension of T with D(T) < Q(T). Let 1 € D(T) and ¢ € D(T) =
D(T). Then:

(o, (T + 1)y = (T + D,y = (T + D,y = @, (T + Dy = W oyr = (o, -

(4.77)

By density of D(T) in Q(T) and continuity of the scalar product, taking the complex
conjugate: ~ R

T+ 1)) =ppr  forall g, pe D(T). (4.78)

This implies that ¢ € D(N), since ¥ € Q(T) and (v, <p>T = (n, ) holds for all <p €

D(T) « D(T), with n = (I'+ 1)y. Thus, D(T) < D(T). Moreover, by Eq. (£76),

(T + 1)y = : therefore, T = T4 for all 1 € D(T). In other words, T < T. By takmg

the adjoint, and recalling Proposition we also have T% < T* but then T’ = T
since T* =T and T = T*.
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4.4 From quadratic forms to operators

Theorem shows how to construct a selfadjoint extension of a nonnegative operator using
the quadratic form associated with the operator. Later, we will be interested in defining a
selfadjoint operator given a certain quadratic form.

Proposition 4.60. Let Q < H, let s(p, 1) be a sesquilinear form on Q x @, with quadratic
form q(vp) = s(v,v). Suppose that q is real valued and that q is semibounded: there exists
v € R such that q(v) = v|¢|?. Let:

W, 09q = s(th, 0) + (1 = 7)) . (4.79)
Then, {-,-)q is a scalar product on Q.
Proof. Exercise. [

Remark 4.61. Recall that a map s(-,-) : Q x Q — C is called a sesquilinear form if it is
linear in the second variable and antilinear in the first variable.

We would like to know whether (-,-), can be thought as the scalar product generated
by an operator T' with quadratic form ¢r = ¢ and form domain @ = Q(T). This is true,
provided we make some assumptions on q.

Definition 4.62. A real valued quadratic form q is called closable if for any sequence (V) <
Q such that |, | — 0 and which is Cauchy with respect to | - |, then |inlly — 0.

Remark 4.63. This is the analog of the property that allowed us to identify Hr with Q(T') <
H, recall Eq..

Let H, be the completion of @ with respect to | - |4. For closable ¢, this space can be
identified with a subspace of H, that we shall denote by Q.

Definition 4.64. The extension of q to Qq is called the closure of g. The quadratic form is
called closed if Qq = Q.

Theorem 4.65. For every densely defined, closed, semibounded form q : Q — R there is a
unique selfadjoint operator T such that Q = Q(T) and q = qr. If s is the sesquilinear form
associated with q, then:

DT)={¢eQ|IneH st s(,p)={mp) foralypeQ} (4.80)
and Ty = .

Proof. For simplicity, we assume that ¢ > 0 (that is, v = 0). Since @ is dense, T is well
defined (there cannot be two different 7y, 1o with s(1), ) = (N1, ) = (N2, ) for all p € Q).
By construction, we have ¢r(¢) = q(¢) for all ¢y € D(T). Tt follows that T is symmetric and
nonnegative. Proceeding as in the proof of Theorem we find that Ran (T'+ 1) = H and
hence T is selfadjoint. Uniqueness is proven again as in the proof of Theorem u

Definition 4.66. A quadratic form is called bounded if |q(v)| < C|v|?. The norm of q is
given by:

lgll = sup |q()] . (4.81)

lvl=1

Remark 4.67. For bounded quadratic forms, the norm induced by {-,-), is equivalent to
the standard norm. In this case, we obtain Hqy = H and the operator T associated with
q is bounded, by the Hellinger-Toeplitz theorem (every symmetric operator defined on the
full Hilbert space H is bounded). Together with the polarization identity, it is not difficult to
check that a closed semibounded form q is bounded if and only if the corresponding selfadjoint
operator T is bounded. In this case, |T| = |q|. In particular, it follows that:

[Al = sup [, Ay)l (4.82)
lél=1

for all symmetric operators.
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5 The spectral theorem

5.1 The spectrum

Definition 5.1 (Resolvent, resolvent set and spectrum). Let (T, D(T')) be a linear operator
on H. We define the resolvent set of T as:

p(I):={zeC|(T—2):D(T)—>H isa bijection with continuous inverse.} (5.1)
For z € p(T) we define the resolvent of T at z as:
R.(T):=(T—2)" eL(H). (5.2)
The spectrum of T is defined as the complement of the resolvent set:

o(T) :=C\p(T) . (5.3)

Remark 5.2. For closed operators, the continuity requirement in Fq. can be dropped.
This is a consequence of the closed graph theorem, stating that a linear map T : X — Y
between two Banach spaces X, Y is continuous if and only if T is closed.

Proposition 5.3. If T is not closed, then p(T) = &.

Proof. Suppose that (T'—z) : D(T') — H is a bijection. Then, (T — z) is invertible, and it is
not difficult to see that T'(T') = I'(T' — 2) = I'((T' — 2)~!) (modulo switching the order of the
pairs in the definition of graph). Thus, if I'(T) is not closed, I'((T — z)~!) is not closed as
well. This means that there exists (,,) = H such that o, — 0 but lim,, (T —2) "1, # 0.
Therefore, (T — z)~! is not continuous. Hence, p(T) = . u

Definition 5.4. Let (T,D(T)) be a closed, linear operator. Then, its spectrum o(T) is
partitioned according to the following criteria:

(a) 0,(T):={2€C|T -2z isnotinjective}

is called the point spectrum, and it coincides with the set of eigenvalues of the operator.
(b) 0.(T):={2eC|T -2z is injective, not surjective, with dense range}

is called the continuous spectrum.
(¢c) o (T):={2€C|T—z 1is injective, not surjective, with no dense range}

is called the residual spectrum.

Remark 5.5. In conclusion, for closed operators:
o(T)=0p(T)vo(T)vo(T), (5.4)
and if dimH < oo then o(T) = 0,(T) is the set of eigenvalues.

Example 5.6. (i) Consider the position operator &, with domain:
D(z) = {¢ € L*(R) | a¢(x) € L*(R)} (5.5)

defined via & : 1 — x1). It follows that (& — )=t is the multiplication by the function
(x — 2)~1, which is bounded for all z € C\R. Therefore, o(&) = R.

The map (& — \) has a dense range for all A € R. To see this, for all ) € L? we define:

P = XR-2 A2y (5.6)
Then, (x — N, — 1 in L%, and hence the range of x — X\ is dense. Therefore,
o(2) = o.(2) =R.

(ii) Let U € L(H) unitary. Then, o(T) = o(UTU ™). This follows from the fact that T — z
is bijective if and only if U(T — z)U~! = UTU ! — z is bijective.

d

Therefore, the momentum operator p = —iJ- on L?(R) has real continuous spectrum,

a(p) = 0.(p) =R, since p = F2F ! and the Fourier transform is unitary.
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Theorem 5.7 (Properties of the resolvent and of the spectrum). Let (T, D(T)) be a densely
defined operator on a Hilbert space H. Then:

(a) p(T) is open, that is the spectrum o(T) is closed.
(b) The resolvent map:

p(T) = LH), 2= R(T):=(T—2)"" (5.7)

is analytic, that is R,(T) can be written locally as a pointwise convergent series with
coefficients in L(H).

(¢c) If T € L(H), then |z| < |T|| for all z € o(T). In particular, the spectrum is compact.
(d) For z,w € p(T) the first resolvent identity holds true:

R.(T) = Ry(T) = (2 = w) Ry (T)RA(T) (5.8)
In particular, the resolvents commute:
Rw(T)Rz (T) = RZ(T)Rw(T) . (59)

The proof of this theorem is based on the following proposition.

Proposition 5.8 (Neumann series). Let X be a Banach space and T € L(X) with |T| < 1.
Then, 1 — T is continuously invertible and:

e}
Q-7)~t=> 1", (5.10)
n=0
and:
[a-T) I <@-]7h". (5.11)
Proof. Exercise. L]

Proof. (of Theorem [5.7})
(a) Let zg € p(T) and |z — 29| < |R,|| "t Then,
T—z=T—2z0—(2—20) = (T —20)(1 = (2 — 20) R, (T)) . (5.12)

Then, the next proposition implies that |(z — z9)R.,| < 1, which means that 1 —
(z — 20) R, is continuously invertible, and hence (7' — z) is continuously invertible.
Therefore, z € p(T).

(b) Thanks to the Neumann series :
a0
R. = (1—(2—20)R.,) 'Rey = > (2 — 20)"RL, (5.13)
n=0

where the coefficients Rt belong to £(H).
(c) Let |z| > |T||. Then, 1 — T is invertible, and T — z as well. Therefore, z € p(T).
(d) We have:

Theorem 5.9 (Spectrum of a selfadjoint operator). Let (H, D(H)) be a selfadjoint operator.
Then, o(H) R and for all z € C\R:

|(H = 2)7'] <

ek (5.15)
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Proof. Let z = X + ip, with A\, u € R and p # 0. Then, (H — \)/u is selfadjoint on D(H)
and, by Theorem 4.41

Ker (HT_A - z) — Ker (H — X — ip) = {0} (5.16)

and:
H -\

1
Eq. (.16) implies that H — z : D(H) — H is injective, while Eq. (5.17) implies that it is
surjective, Therefore, H — z : D(H) — H is a bijection. Moreover, the inverse is bounded,
since:

Ran( —i) — Ran (H — A —ip) = H . (5.17)

[(H =X —ip)pl* = [(H = N[ + |up]* = o) (5.18)
which implies that |(H — 2)71| < 1/|u|. Therefore, z € p(H). ]

Lemma 5.10. Let T : D(T) — H be a symmetric operator, and suppose that o(T) < R.
Then, T is selfadjoint.

Proof. If o(T) c R, then T — z : D(T) — H is a bijection for all z € C\R. In particular,
Ran(T — z) = H; being T symmetric, Theorem implies that it is selfadjoint. u

Remark 5.11. Therefore, Theorem and Lemma [5.10] imply that a symmetric operator
T is selfadjoint if and only if o(T) < R.

Lemma 5.12. Let T : D(T) — H be a closed, densely defined operator. Then,
| Ra (T)]| = dist(z0,0(T)) ™ (5.19)

for all zg € C.
Remark 5.13. If T is bounded, we have {z € C | |z| > |T|} < p(T).

Proof. The radius of convergence of the Neumann series (5.13) is |R.,(T)|~!. Also, the
series cannot converge if z € o(T); therefore, |R,,(T)| ™! < dist(z0,0(T)). u

Remark 5.14. For selfadjoint operator, one actually has:

1

I =) = oot

(5.20)

The next theorem provides a useful criterion to decide whether z € o(A).

Theorem 5.15 (Weyl criterion.). Let T : D(T') — H be a closed densely defined operator.
Suppose that there exists a sequence v, € D(T) with || = 1 for all n € N and such
that |(T — 2)n|| — 0 (such a sequence is known as a Weyl sequence at z). Then, z € o(T).
Conversely, if z € 0p(T) < o(T) (recall that o(T) is closed), then there exists a Weyl sequence
at z.

Proof. Let 1, be a Weyl sequence at z. If z € p(T'), we would have
[ton ]l = [ R=(T)T = 2)bn | < [R=(T)I(T" = 2)on| < C[(T' = 2)¢pn| — 0, (5.21)

thus giving a contradiction. Hence, z € o(T"). On the other hand, suppose that z € do(T').
Then, there exists a sequence z, € p(T) with z, — z. From Theorem we have
|R., (T)| — oo. Hence, there exists (¢,) < H such that |R,, (T)en|/llen] — . Let
Y = Ry, (T)on/| Rz, (T)@n|. Then, |1,| =1 for all n and:

lson|
| R, (T)en

Hence 1, is a Weyl sequence. n

(T = 2)on] < (T = 2n)onl + |z = zul[¢n] = +lz—2| = 0. (5.22)
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Another useful result is the following lemma, that establishes a relation between the
spectrum of T and the one of its inverse 7! (which is a densely defined operator on H, if
T is injective and RanT is dense).

Lemma 5.16. Let T be injective and RanT be dense. Then, T~!: RanT — H is such that:

o(T7\0} = (a(T)\{o)~" . (5.23)
Furthermore, Tt = Xy if and only if T~ ¢ = A\~ 4p.
Proof. Let z € p(T)\{0}. Since, for every ¢ € H:
(T =2 (=2)TR.(T)p = (T = 2)R.(T)p = ¢ (5.24)
and for all ¢y € D(T~') = Ran (T) we can write ¢ = Tp, we have:
(—2)TR(T)T™' =2 = (=2)TR(T)(T™' =2 "Ty
= TR, (T(T—-2)p=Tp=1. (5.25)

This shows that T-! — 271 : D(T—1) — H is a bijection, with inverse given by (—2)T'R,(T).
Therefore, z~% € p(T~!) and:

R,+(T™Y) = —2TR.(T) = —z — 2*R.(T) . (5.26)

Inverting the roles of T and T~! we have that z=1 € p(T1)\{0} implies z € p(T). Thus,
recalling that o(T") = C\p(T'), we have that z € o(T)\{0} if and only if 2~ € o(T~1)\{0}.
To prove the relation between point spectra, notice that if T = A holds, then Ay is in
the range of T, and hence 1 is in the range of T. Therefore, we can apply 7! to both sides
of the equation and obtain 1) = AA~14), that is A~ty = A~ 19, u

5.2 Postulates of quantum mechanics

5.2.1 Observables

As discussed already in Section quantum mechanical systems are described by vector
in Hilbert spaces. Physically measurable quantities, called observables, correspond to self-
adjoint operators on H. The expected value associated with the self-adjoint operator T in
the state ¢ is given by (W, T1).

The vector 1 does not only determine the expectation of T', but also the distribution of
its possible values. Let us consider the simple case in which A has the decomposition:

T =Y NP, (5.27)
J

with \; € R the eigenvalues of T, and P, the orthogonal projection onto the normalized
eigenvector ;. That is:

Poh = (o, )¢ - (5.28)
One also uses the notation P, = [¢){(¢|. Then, we have:
W) = 3 MK ol - (5.29)
J

Eq. is called the spectral representation of the operator 1. The spectral theorem
for unbounded operators, that will be discussed later on, implies that the vectors ¢; form
an ONB for H (this is clear if dim# < oo, from the spectral theorem for matrices). In
particular, 3, [{¢), i[> = 1. So far, we are assuming that the spectrum of the observable
T coincides with its point spectrum. As we shall see, the spectral theorem will allow to
generalize the expression to cases in which o,(T) # o(T), introducing the concept of
projection-valued measure.

The interpretation of the identity is the following: the eigenvalues A; are the
possible values of the observable 7' and [(1, p;)|? is the probability that, if the system is
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in the state 1, a measurement of 7' gives the value A;. If for example 1) = ¢;, then a
measurement of 7" will produce the value A; with probability 1. In general, however, 1 will
be a linear combination of different ¢;’s. Hence, a measurement of 17" will give different
values with different probabilities. It makes sense, therefore, to define the variance of T' in
the state i by setting:

ATy = (b, (T =, Tw)) iy = (b, Ty — (4, TY)* . (5.30)

If, as before, T = . j Aj Py, a simple computation shows that:

ATy = > (N — @, T2, @) (5.31)

J

An important property of quantum systems is that noncommuting observables cannot be
measured simultaneously with arbitrary precision.

Theorem 5.17 (Heisenberg’s uncertainty principle.). Let A, B be two self-adjoint operators
acting on H. Then, we have:

AAGABy > 1[0, [A, B (5.32)

Proof. For simplicitly, suppose that (¢, AY) = (¢, Byy = 0 (if not, redefine A, B by sub-
tracting their average values on ). Then,

Therefore,

[, [A, BI)| < 2[(b, ABY)| < 2|(AY, B)| < 2| Ap|||By| = 2(AA,)3 (ABy)? . (5.34)

That is: .
AAAB, > 1w [A BIP (5.35)
[
In particular, choosing A = &; (position operator) and B = p; = —iV, (momentum

operator), assuming that [[1)|2 = 1, we obtain the relation:

b
AzipApjp = 55 (5.36)

5.2.2 Time evolution

In every quantum system there is an observable that plays a particularly important role, the
Hamiltonian. It generates time evolution via the Schrédinger equation:

i (t) = H(t) . (5.37)

If H is a bounded operator, the unique solution of the Schrédinger equation can be written
as

b(t) = e Hy(0) (5.38)

where the exponential of H is defined via its Taylor expansion, which converges for all times
for bounded operators. More generally, if H has the spectral decomposition H = ) y APy
the exponential map is defined as:

e =N emNip, (5.39)
J

In particular, the solution of the Schrodinger equation associated to the initial datum (0) =
@; is simply given by: 4
PY(t) = e PNite, . (5.40)
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In this case, the expectation of an arbitrary self-adjoint operator T is given by:

@), Tp(t)) = (i, Tepi) (5.41)

and does not depend on ¢. Physically, the vectors ¢ (t) = e_i)‘itcpj describe the same state
for all times.

The spectral theorem will allow to introduce a spectral decomposition for any self-adjoint
operators, even unbounded ones, and will allow to make sense of the exponential of the
Hamilton operator. This in particular proves existence and uniqueness of the solution of the
Schrodinger equation for general Hamiltonians.

5.3 Projection valued measures

As explained in Section the spectral representation of a self-adjoint operator T is often
useful in quantum mechanics. It tells us what are the possible outcomes of a measurement of
the observable associated to 7', and the probability with which possible values are assumed.
Moreover, as we shall see later, it allows to define a functional calculus, that is to make sense
of functions of operators. An important example is the unitary evolution e "7 associated
to the Hamiltonian H.

In this section we will discuss how to define functions of self-adjoint operators, satisfying
the properties:

(f+9)(T) = f(T)+9(T),  (fg)(T) = f(D)g(T),  F(T)=[f(T)*. (5.42)

The question is, for which class of functions f do we want to define f(T"). As long as f
is a polynomial, we can define f(7T') by simply takinng powers of 7. However, for several
purposes, including solving the Schrodinger equation, taking powers of T' is not enough. The
next guess would be to consider functions that can be approximated by polynomials, like
analytic functions. This works for bounded operators, but does not work well for unbounded
operators: taking high powers of an unbounded operator typically makes the domain smaller
and smaller.

A better approach consists in defining xq(T) for all characteristic functions of Borel sets
Q c R, and then in using the bounded operators xq(T) to construct measurable functions of
A. The main advantage of this approach is that, since x3 = xq = Xq, the operator xqo(T) is
an orthogonal projection, for all Borel sets {2 = R. On the other hand, we have to show how
to use the orthogonal projections xq(7T) to define f(T') for a general measurable function f,
We start by discussing the second step, and we postpone the first.

Definition 5.18 (Projection-valued measure). Let H be a Hilbert space. Let B(R) be the
Borel o-algebra over R. We say that a map P : B(R) — L(H) is a projection valued measure
if:

(i) P(Q)? = P(Q) = P(Q)*, for all Q € B(R).

(i) P(R) = 1y4.

(iii) (Strong o-additivity) If Q =, . Qn with Q, N Qy, = & for all n # m, then:

neN
N
DIP(Qu)y = lim Y P(Qu)y = P(Q)y, (5.43)
N—
neN n=0
for all ¢ e H.

Example 5.19. (a) Let H = C? and T € L(C?) be a symmetric d x d matriz. Let
Al < Ay < ... < Ag be the eigenvalues of T, and Py,..., Py be the corresponding
eigenprojectors (for simplicity, we assume the eigenvalues to be simple). Then, we can
define:

P@Q)= > P (5.44)
j:)\]‘EQ

It is easy to check that P : B(R) — L(C?) is a projection-valued measure.
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(b) Let H = L*(R) and set P(Q) = xa(x), with xq the characteristic function of the set
Q. Also in this case, P defines a projection valued measure on H.

Remark 5.20. In the definition of projection valued measure we request o-additivity to hold
in a strong sense (that is, after application to a fixed ¢ € H), and not in norm (that is,
taking the supremum over all v). This is an important point. Already in the simple example
discussed above, where P(Q) = xq(z) is a multiplication operator over L*(R), we do not
have o-additivity in norm, because the operator norm of multiplication operators is the L™
norm and thus:

IP(@) = P@)] = Ixnsale = { § FAGR0) 0 (5.45)

where QAQ = (\Q) U (V\Q) is the symmetric difference of the two sets and u(-) denotes
the Lebesgue measure on R. Eq. implies that o-additivity does mot hold in norm.

Remark 5.21. In Definition strong o-additivity is actually equivalent to weak o-
additivity. In other words, Eq. is equivalent to the condition:

D, P(Qa)py = (b, (), for all e M. (5.46)

neN

This follows from the fact that, if P, is a sequennce of orthogonal projections and P is an
orthogonal projection with w — lim,,_,o P, = P then, for any ¥ € H.:

|Patpl® = (Putp, Patp) = b, Puth) — (b, Py = | Py? . (5.47)
The weak convergence P, — P together with | P,|| — | Py| implies that P,y — Pi. Hence,
P, — P strongly.
Next, we discuss some important properties of projection-valued measures.

Proposition 5.22. The following properties are true.
(i) P(J) =0 and P(Q°) =1— P(Q)
(i) P(Qq U Q) =P(Q) + P(Q2) — P(Q1 N Q).
(iti) P(Q1 N Q2) = P(Q)P(Q)
(iv) P(Q1) < P(2) if Q1 < Q.

Proof. Exercise. L]

Definition 5.23 (Resolution of the identity). For every projection-valued measure P we
define the resolution of the identity p : R — L(H) via p(A) := P((—o0; A]).

Remark 5.24. Then, p()) is clearly an orthogonal projection for all A € R. Monotonicity
of P implies that p(A1) < p(A2) if A1 < Aa. Also, strong o-additivity implies that for every
1 € H and every sequence A, such that A\, < X\ for all n € N and such that \,, — X as
n — o,

lim p(An)¢ = p(A)¢ . (5.48)

n—oo
That is, s — lim,—,_o p(A\,) = p(N\). Another consequence of strong o-additivity is that:
s— lim p(A)=0, s — )\lim p(A)=1. (5.49)
—00

A——00

As above, strong convergence of an orthogonal projection towards an orthogonal projection is
equivalent to weak convergence.

Definition 5.25 (Measure and distribution associated to a projection-valued measure). For
any fized ¢ € H, we define the finite measure pry, : B(R) — [0;00) via py(Q) = (¥, P(Q))
for all Q € B(R). The corresponding distribution function dy : R — [0;00) is given by
4 (\) = po(~o0, -

Remark 5.26. Notice that p,(2) < [¢|2. Therefore, dy(N) < [[¢]*. Also, dy(N) =
| P((=o0; A = (b, p(N)9).
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More generally, starting from the projection valued measure we can also introduce, for
every ¥, € H, the complex measures iy () = (@, P(Q)p). They are related to the
positive measures fi,, via the polarization identity:

1 _ .
P (1) = i () = Hy—o (@) + ihy—ip (Q) — ipyrip(D)] - (5.50)
Also, they satisfy |1y, (Q)] < [PQ)Y[|PQ)e] < [¥]]e]-

Remark 5.27. FEvery distribution function is associated with a unique measure on the Borel
o-algebra B(R). One can also show that every resolution of the identity p : R — L(H) with
the properties listed above is associated with a unique projection valued measure. This follows
from the fact that the resolution of the identity allows us to define distribution functions dy,
which in turn can be used to reconstruct the measure jy. Then, it is easy to check that for
all @ € B(R) there is a unique orthogonal projection P(Y) such that py(2) = {, P(Q)Y).
This follows from the fact that a linear operator can be reconstructed from the corresponding
quadratic form, via the polarization identity.

5.4 Functional calculus

We shall now use the projection valued measure P : B(R) — L(H) to define a functional
calculus, that is a map from a class of functions to operators. We start with the set of
measurable simple functions.

Definition 5.28 (Simple function.). We say that the function f is a simple measurable
function on R if

f:ZOéjXQj, neN, «a;eC, Q;eBR), (5.51)
j=1

with Q; " Qp = & for all j # €. We denote by S(R) the space of simple measurable functions
on R (or simple functions, for short).

Definition 5.29 (Functional calculus for simple functions.). Let f€ S, f = Zj ajxo,. Let
P:BR)— L(H) be a PVM. We define the functional calculus ® : S — L(H) as:

O(f) = Y, oy P() . (5.52)
j=1
Remark 5.30. We shall also define:
| Fann) = Y aspe@). (5.53)
j=1

Remark 5.31. Notice that for arbitrary ¢, € H we have:

n

(p, @)y = D o, PQ)P) = 3 i (2)) = Jf(/\)dﬂsa,w(/\) : (5.54)

Jj=1 J=1

The right-hand side is the Lebesgue integral with respect to the complex measure p,  (which
is just a linear combination of real measures, according to the polarization identity ).

Proposition 5.32. The functional calculus ® : (S, |- o) = L(H) is a bounded linear map,
with |®] < 1.

Proof. Linearity immediately follows from the definition. Let us prove boundedness. For
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1 € H, we have:

lotryel” = | X P
= 2 lglPIPQ)y)?
j=1
= oy Py (@)
j=1
o LR (5.59
In particular,
12(H)el < 1Fleoll®ll (5.56)
where we used that j,(2;) < [|?. Therefore:
[2(H)]
O := <1. 5.57
o= <! (557
]

Recall the notion of Borel measurable function on R. We say that a function f: R — C
is called Borel measurable if for any Borel set 2 = B(C) one has f~1(Q) < B(R). We denote
by M), the space of bounded Borel functions.

Proposition 5.33. The functional calculus ® : (S,| - |) — L(H) extends uniquely to a
bounded linear map ® : (My, | - o) — L(H).

Proof. The proof is an application of Theorem [3.66f To begin, recall that any bounded
measurable function can be approximated in L* norm by simple function. Therefore, S is
dense is My, with respect to the | - [ norm. By Theorem @L there is a unique extension
of ® to a bounded linear map ® : My — L(H), with norm |®| < 1. This defines ® for all
feMy. u

The Lebesgue integral of functions in My, is defined as the limit of the Lebesgue integral
of simple functions. We have, for any f e My:

W, 0 (f)p) = f FOdpis () - (5.58)

We shall also generalize the definition (5.53|) by setting:

j FN)dp(N) = ©(f) . (5.59)

Theorem 5.34. Let P : B(R) — L(H) be a projection-valued measure. Then, ® : M, —
L(H) is a C*-algebra homomorphism with norm one. Moreover, for every sequence f, € M,
and f € My such that f, — f pointwise and with || f,|ls bounded, we have ®(f,) — D(f)
strongly.

Remark 5.35. The fact that ® is a C*-algebra homomorphism means that ® is linear, that

®(1) =1, that (fg) = (f)P(g) for all f,g € My and that D(f) = (f)*.

Proof. For simple measurable functions, It is easy to check that ® is linear, that it satisfies

O(fg) = ®(f)®P(g9) and that &(f) = ®(f)*. For general bounded measurable f, these
properties follow by approximation.
If f, — f pointwise and | f||c < K, then, by dominated convergence theorem:

(o, ®(fn)h) = an()‘)dﬂ%lb()‘) - Jf(A)duga,w(/\) = (e, () - (5.60)
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This shows that ®(f,)v — ®(f)y weakly, as n — . Moreover, again by dominated
convergence theorem:

00l = [1, 0P > [IFOPdrs) = o). (G61)
This implies that ®(f,)® — ®(f)1, which means that ®(f,) — ®(f) strongly. ]
Remark 5.36. Since @ : My — L(H) is a C*-homomorphism, we find that:

@(g)p. () = (o B(g)* D))
= (o 2@y = j @) (N dpg () = j TN N iy, (5.62)

for all f,g € My and for oll p,7 € H. Hence, we have:

o)ty () = (@(0), (x) By = f W) F N dgap p(A) . (5.63)

which implies that
dpig(gyp, @ (e =9I dtpp - (5.64)
Example 5.37. Let H = C?. Let T € C™*% matriz. Let Ay < Aa... < A\q be the eigen-

values of T, that we assume to be disjoint. Let Py,..., P; be the corresponding (rank 1)
eigenprojectors. We already defined the projection valued measure associated to T as:

> P (5.65)

J:A;EQ

Let My be the space of bounded measurable functions on o(T). The functional calculus
associated to this space of functions is the map ®p : My — L(C?):

d
= > f)P; (5.66)
j=1
We have, for any 1) € C?:
(=0, A = X [P (5.67)
JiA <A
or equivalently:
d
@ e = [ Oy = PNLSTATS (5.68)

The above discussion allows to define a functional calculus for bounded functions. Next,
we shall introduce a functional calculus for unbounded functions; this is relevant for un-
bounded self-adjoint operators (like the Laplacian).

For f unbounded, we expect ®(f) to be an unbounded operator. Hence, we first have to
define its domain. Recall that. for every bounded measurable function f, we have:

B0l = [ 17 Pdies ) (5.69)
Hence, we expect that even for unbounded f, the operator ®(f) can be applied on it, if

fe LR, duy).

Definition 5.38. Given f: R — C, we define the domain of the functional calculus associ-
ated to f as:
— e M| fel? (R duy)}. (5.70)

Proposition 5.39. D; is a linear subspace, dense in H.
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Proof. For every Borel set < R, we have piny(Q) = |a]? 1y (2) and:

My (2) < 2705 () + 204,(2) - (5.71)

This bound implies that f € L*(R, dpay+y) if f € L*(R,dpy) N L3(R, dp,) and a € C. Hence
a+peDyif,peDyand aeC.

To prove that Dy is dense in H we proceed as follows. Let Q, = {A e R | |f(\)] < n}.
Then, for any ¢ € H, we define ¢, = P(Qy,)9. Since duy,, = xq, dity, we have ¢, € Dy for
any n. Moreover, since xq, — 1 pointwise, it follows that ¢, — ¥ strongly. This proves
that D; is dense. L]

Proposition 5.40. Let f be a Borel measurable function on R. Let ) € Dy. Let (fn) < My,
such that f, — f pointwise and such that || fn||L2®.dpu,) s bounded uniformly in n. Then,
the limit imy, o @(fn ) =: ®(f) exists in H and does not depend on the sequence (fy). It
defines a linear map ®(f) on Dy, such that for all ¢, € Dy:

|e(f)v]* = flf(k)lzduw(k) , W2y = ff(k)duuj,w(/\) : (5.72)

Remark 5.41. The first integral makes sense by definition of Dy. The second integral also
makes sense, since by Cauchy-Schwarz L*(R,duy) = LY(R,duy) (recall that du.y, is a finite
measure, that is it has finite mass).

Proof. By dominated convergence, we have f,, — f in L*(R, du,). Therefore,

[2(f)d — ®(fr)¥]| = [®(fn = Ffrm)¥)* = Jlfn()\) — Fn (M Pdpy (V) (5.73)

which implies that ®(f,)® is a Cauchy sequence in H. Therefore, the limit exists and we
set:

O(f) = lim B(f,)0 - (5.74)

It is easy to see that the limit does not depend on the sequence. Therefore, it defines a linear
map @(f) on Dy, and moreover:

()0l = [1700Pdusn) (5.75)

for all ¢ € Dy. Since py is a finite measure, we have that L*(R,duy,) < L' (R, du,) and
therefore:

@80 = [ SN . (5.76)
or more generally:
@810 = [ ). (5.77)
| |
Remark 5.42. We shall set:
B(f) = [ FONdp(Y) (5.78)

Theorem 5.43. For every Borel measurable function f : R — C, the operator ®(f) : Dy —
H is a normal operator (meaning that D(®(f)) = D(®(f)*)) and | 2(f)y[ = [®(f)*Y| for
allp € D¢. Moreover, for f,g Borel measurable and o, 5 € C, we have ®(f)* = ®(f),

a®(f) + po(g) = @(af + Byg) , (5.79)
with D(a®(f) + BP(g)) = D)g|4|g and:
o(f)®(9) = 2(f9) (5.80)

where D(®(f)®(g)) = Dy N Dyy.
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Proof. Fix a Borel measurable function f : R — C. For n e N, let Q, = {Ae R||f(\)| <n}
and let f, = fxq,. Then, f, € M} and thus ®(f,)* = ®(f,) by Theorem For any
¢,¥ € Dy = Dy = Djy|, we have:

G, @) = lim G, B(f)0) = Tim (@(F)p, ) = @(Pp, 0y (5:81)

This implies that D(®(f)*) > D(®(f)) = D(®(f)) = Dy, and that, for all ¢ € Dy, one has

O(f)*¢ = ©(f)p. To conclude that ®(f)* = ®(f) we still have to show that D(®(f)*) < Dy.
To this end, let us fix ¢ € D(®(f)*). Then, there exists @ € H such that (o, P(f)V) = (F,¢)
for all ¢ € D(®(f)). By definition of ®(f) we find, for every £ € H:

2(N)2(xe, )¢ = lim &(fn)®(xe, )¢ = lim ®(fxa,xe.)E = P(fn)¢, (5.82)

since xq,,Xo., = X, for all m > n. Hence, we find:

(D(fn)e: &) = (o, ®(fn)8) = (o, 2(/)@(x0,)E) = (B, ®(x0,)E) = (P(x0,)?,§)  (5.83)
for all £ € H. This implies that ®(f,)¢ = ®(xq, )¢ and therefore that:

flfn(A)IQdugo(/\) = [@(fa)el® = [2(x,)2I” — 181>,  asn— . (5.84)

Since f is the pointwise limit of f,, the monotone convergence theorem implies that f €
L3(R, dpuy), with:

ﬁﬂmﬁwam=wﬂ? (5.85)

Hence ¢ € Dy. We obtain ®(f)* = ®(f), for all Borel measurable functions f over R. This
also implies that:

|2yl = JIf(A)IQduw(A) = [@()v)* = [@(f)* ¥ (5.86)

for all ¢ € Dy = Dy. Hence, ®(f) is a normal operator.

Next, we observe that for two Borel measurable functions f,g: R — C and for o, 5 € C,
we have D(a®(f) + P(g)) = D(®(f)) n D(®(g)) = Dy N Dy = Djy|4|g|, because |f| + [g] €
L*(R,dpuy) if and only if f € L*(R,duy) and g € L*(R, duy,). Since |af + Bg| < C(|f| + |g]),
it is easy to check that D|s|g) © Dayipg. It remains to show that a®(f)y + P(g)y =
O(af + Bg)y for all ¥ € Dyg1y. To this end, for n € N, set:

Qn = {AeR[[f(NI+ gV <n},  fo=Ffxa.,  9n=9xa, - (5.87)

For ¢ € Djf|4|g, We have O(fu)b — (Y, Plgn) — P(9)0, a®(fn)Y + BP(gn)Y =
P(afn + Bgn)Y = @((af + Bg)xa, )Y — (af + Bg).
Finally, we prove Eq. . To this end, assume first that g is bounded. Then:
D(®(f)®(9)) {veH|®(9)YeDs}={weH|fe LR dusgy)}
{peH | feL*R,|glduy)}
{veH| fge L*(R,duy)} = D((fg)) = Dy, - (5.88)
Thus, for all ¢ € D(®(fg)), we have ®(g)1 € D(®(f)) and (recalling that f, = xq, f, with
Q= (AR | |FV)] < n)):
)

(f)2(g)y = lim &(f,)®(g)¢ = lim @(fng)y = S(f9)y . (5.89)

This shows that, if g is bounded, ®(fg) = ®(f)P(g). If now g is not necessarily bounded,
we define ,, = {A € R | [g(N)| < n}, gn = gxa,. Suppose that ©» € Dy N Dyy. Then, we
have ®(g, )Y — ®(g)1. Moreover, ¥ € Dy, = D(®(fgy,)) = D(®(f)P(g,)) implies (from
the case considered above) that ®(f)®(gn)Y = ®(fgn)y — P(fg)rp. Since ®(f) is closed

(which follows from ®(f) = ®(f)** = ®(f) = ®(f)), this shows that ®(g)y € Dy and that
O(f)@(9)y = 2(fg)¥ .
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5.5 Construction of projection valued measures

The discussion of the previous section allowed us to define the functional calculus, given
a family of projection valued measures. In particular, given P : B(R) — L(H), we can
associate a self-adjoint operator T' = § Adp(\) with domain:

D(T)={weH| f)?duw(/\) < w}. (5.90)

The question we shall consider is this section is: given a self-adjoint operator T, is it possible
to find a projection valued measure P such that T can be expressed as T' = { Addp(\)? If yes,
this provides a spectral representation for the operator 7. We shall first answer this question
for the resolvent of T', R,(T), and later for T'.

Definition 5.44. Let p(-) : B(R) — R be a Borel measure. For all z € C\suppp, we define
the Borel transform F of u as:

1
F(z) = du(X) . 5.91
() = | 5 sdut (591)
Remark 5.45. The support of the measure is defined as:
suppp = {AeR | u(O) >0 for all open neighbourhoods O of A} . (5.92)
Remark 5.46. Since 1
ImF(z) = Imz f md,u(/\) , (5.93)
we conclude that z — F(z) is a holomorphic function mapping the upper half complex plane
{z € C | Imz > 0} into itself. Such functions are called Herglotz or Nevanlinna functions.
Theorem 5.47. Every Herglotz function F' has the form:

F(z):bz+a+J

) [/\L A ]du(/\) , (5.94)

—z 14+ A2

withb >0, a € R and p a Borel measure on R with:

Jﬁl)\?du()\) <. (5.95)

Conversely, for every b = 0, a € R and for every Borel measure i satisfying Eq. , the
function is holomorphic on C\suppu. It is such that F(Z) = F(z) and:

ImF(z2) = Imz [b+ f M—%Pdﬂ(/\)] (5.96)

for all z € C\suppu. Moreover, if F is a Herglotz function, the triple (a,b, ) satisfying
15.94)) is uniquely determined by

. . 1
a = ReF' (i), b=ImF(i) — J md,u()\) (5.97)
and by the Stieltjes inversion formula:

[1((\s A2)) + p([hs Ao])] = lim lrz ImF() + ic)d) . (5.98)

e—0+t T A1

N | =

Remark 5.48. That is, this theorem allows us to construct a measure starting from a
Herglotz function. Later, we shall take as Herglotz function the quadratic form associated to
R.(T), and use this theorem to construct the projection valued measure.
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Proof. Let f(z) =i(i—2z)/(i+2). It is easy to see that f is holomorphicinD = {z e C| |z|] <
1} and that it takes values in C; = {z € C | Imz > 0}. More precisely, f maps the lower
disk D_ = {z € D | Imz < 0} into C\D and it maps the upper disk D = {z € D | Imz > 0}
into itself. Also, the map is invertible, and f~!: C, — D is simply f~1(2) = f(2). Let:

C(2) i= —iF(f(2)) (5.99)

One easily sees that if the map F' is Herglotz then C is a Caratheodory function, that is an
holomorphic function on D with ReC(z) > 0 for all z € D. Also, we can invert Eq. (5.99)
and obtain:

F(z) =1iC(f(2)), (5.100)

which shows that if C' is a Caratheodory function then F' is a Herglotz function. Thus, F' is
Herglotz if and only if C' is Caratheodory.
We claim now that every Caratheodory function C' : D — C has the form:

. Tl 4 oz
C(z) =ic+ J e Zdl/(ga) (5.101)
for ¢ = Im C(0) € R and for a finite measure v, with:
f dv(5) = Re C(0) . (5.102)

To prove this claim, let C': D — C be a Caratheodory function and fix 0 <r < 1. Fix z € D
with |z| < r. By Cauchy theorem, we have the identity:

1 E+2z r/E+z d¢
Clz) = — —|C (&)=
() Ami Jig)=r [f—z r2/§—z] © ¢
1 E+z d¢
= — Re c)—=
211 |&]=r (5*2) (5) €
1 4 ret 4+ 2 i
We take the real part:
ReC(z) = [ Bupplang(z) — p)dvi () (5.104)
where we set: ]
1+ re*¥ o dp
— — oy
P.(¢) = Re I dv,.(p) = ReC(re )271' . (5.105)

Notice that dv, is a Borel measure, thanks to Re C' > 0. Setting z = 0, we obtain:

J7T dv, () = ReC(0) < 0, (5.106)

—T

uniformly in r < 1. This implies that there exists a sequence r,, — 1 and finite Borel measure
v on [—m; 7] such that, as n — oo:

| oo~ [ s (5.107)
[—mm] [—msm]

for all f € C([—m;~]). In fact, uniform boundedness implies the existence of a subsequence
of measures converging vaguely, that is after testing with compactly supported continuous
functions; this can be proven approximating compactly supported continuous functions with
simple functions, and from the convergence of v, ([A1; A2]) on subsequences, for any interval
[)\1; )\2]
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For |z| < 1, we also have P, /.(argz — ¢) — P |(argz — ¢) as r — 1, uniformly in . We
conclude that:

T

ReC(z) = lim ) Py, (arg(z) — @)dvr, (9)

n—o0

us

= lim P‘Z|(arg(z) — SD)dVrn ((P)

—
n—ow J__

- r P (arg(2) — p)dv(p)

—T

r Re [Z: - i]dy(w) . (5.108)

—T

The claim (5.101f) now follows because every holomorphic function is determined by its real
part, up to an imaginary constant. In fact, let f(z) be a holomorphic function, such that
Ref = 0. Then, the Cauchy-Riemann equation implies that Imf = constant. Therefore,

f(2) = ic. This proves Eq. (5.101).

Let now F' be an arbitrary Herglotz function and C the corresponding Caratheodory
function, defined as in (5.99). Then we can write F(z) = iC(i(i — 2)/(i + z)), or F(z) =
iC((i — ) /(i + 2)) for the function C(z) = C(iz), which is also a Caratheodory function and
therefore admits a representation as in . Hence:

F(z) = iC((i—2)/(i +2))

'Lgo + i—z
—c+ zf %dy(w)
[—ms7] e’ itz

[ e e
- + ﬁ . eztp_1>+2(ez<p+1)d (90)

etv—1

z—l—z -
= —c+zf eerd()
[7r7r]’L “;,4_1 +Z

© 1+ Az
o A—

—c+v({{—mmn})z +J du()\) (5.109)

where we changed variables, setting A = f(p) with the function f : (—m;7) — R defined

through f(p) = i(1 — €™?)/(1 + €¥), we introduced the Borel measure i over R such that

f(A) = v(f~1(A)), and we took into account the weight of v at +m. Setting a = —c,

b=v({£r}) and du()) = (1 + A?)dfi()\), we obtain the desired representation of F.
Suppose now that a Herglotz function F' has the form . Then, we find

1 (*
lim — f Im F(\ + ie)d\

e—0+t T A1

_ fim © J o i)y (5.110)

~ lim f J ()

= lim 7r[Mctg(( 2 — x)/e) —arctg((M — z)/e)]dp(z)

= [ 30n(®) + X (@e(o)

= 20 ) + (013 02))) (5.111)

where we used the dominated convergence theorem to take the limit € — 0, since

1
S A1 () + X (a0 ()] (5.112)

~arete(\z — 0)/) —arctg(( — 2)/2)] — 5
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pointwise, and

C
1+ 22
for an appropriate constant C' depending on A1, Ao. The formula for a,b follows evaluating

(5.94) at z = 1. u

The next proposition allows to establish a link with the resolvent of selfadjoint operators.

%[arctg(()\g —x)/e) —arctg((M — x)/e)] < (5.113)

Proposition 5.49. Let (T, D(T)) be a selfadjoint operator. Let Fg(z) be the quadratic form
associated to R,(T):

Fj(2) = W, R.(T)) . (5.114)

Then, Fg(z) is a Herglotz function, and it can be written as:

FI(z) = JR %du()\) , (5.115)

for a unique finite Borel measure L.

Proof. By the analyticity of z — R,(T'), recall Theorem we see that Fg (z) is analytic
in p(T), and in particular in C. Also, F[(z) maps C into itself, since:

IFf(z) = o[, Ra(T)S) ~ @, B (D))
1

= 5. (B(T) = R(T)*)¥)
_ %@,(RZ(T)fRE(T))@

z

= W R()R(T)) (5116)

where in the last step we used Eq. . Therefore, ImFg(z) = Imz||R,(T)y|* = 0 for
z € C4. Hence, FwT (z) is a Herglotz function, which means that it can be rewritten as in Eq.
7 for some (a,b, ). We clam that a = b = 0, and that p is a finite Borel measure. In
fact, by Eq. (5.15)) one has |R,(T)| < 1/|Imz|, which implies that

WwEy (i)l < v, vyeR. (5.117)

This implies that qu(z) has the form:

Fj(2) = JR %du()\) . (5.118)

The fact that the measure is finite, u(R) < oo, follows from

2

yImF (iy) = f dp(n) < []? | (5.119)

_Yy
A2 +y?
and from dominated convergence. u

Remark 5.50. Moreover, theorem tells us that we can reconstruct the Borel measure
associated to Fg by the inverse Stieltjes transform. In particular, the distribution function
dT () = pu((—o03 ) is:

A+6
T : . T .
a5 = lim lim T LO I FI(t + ie)dt (5.120)

Since this is a distribution function, it can be used to reconstruct the corresponding Borel
measure ,ui : B(R) — [0;00) (write the measure of any Borel set via the complement, count-
able union or intersection of sets (—o0, A], A€ R).
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We are now left with constructing the projection valued measure. For every Q € B(R),
we define the quadratic form:

W) = pT(Q) = f xa(NdiT () . (5.121)

Through the polarization identity, we also find a sesquilinear form s} (¢, 1) such that ¢& (1)) =
s& (1, 1). Clearly,

561, 9) = 11,,(9) , (5.122)
with MT . defined from M via the polarization identity. Since 0 < qr (1)) < ]2, we have,
by the Cauchy Schwarz 1nequahty for sesquilinear forms:

|55, ) < ab ()2 ad(9)? < [¥lle] - (5.123)

By Riesz’ representation theorem, we can write the map ¢ — s (1, ) as s& (¥, 0) = (n, ),
for a unique n € H. By the antilinearity of the sesquilinear form, it is not difficult to see that
n = QT ()*v, for a bounded linear operator QT () with [QT(2)| < 1. We then have:

561, 0) = iy () =, QT (V) ,  gh() = py(Q) = W, QT(Q)Y) . (5.124)
Lemma 5.51. The map QT : B(R) — L(H) is a projection valued measure.

Proof. That is, we have to prove that:
(i) QT(Q)? =Q"(Q) = QT(Q)*.
() QT(R) = L.

(iii) Strong o-additivity.

We prove first that Q7(21)QT (Q2) = QT (21 N Q) for all Q1,0 € B(R). This implies, in
particular, that for ; = Q:

QT(Q)? = QT(9) . (5.125)
To this end, we observe that, for all z, zZ € C\R, by definition of d,ugs(T)%w(/\):
1
| st ) = (ReD), RAT)) = o, RATIRATIY)
1
- Ll RO -G RMY], (5120
where we used the resolvent identity:
R.(T) = R:(T) = (= — H)R.(T)R:(T) (5.127)
We conclude that:
1 . 1 1 1 .
J A3 = gf [A —z a- z]d“wm
11,
= — . 12
B (5128)
Since this identity holds for all Z € C\R, we must have:
1
dﬂ’gg(T)Lp,w(A) = Edﬂi,gp(M : (5.129)
Therefore,
1 T T
J M@y = Jd“Rz(T)%Q(Q)w(/\)
= (o R(T)QT()Y)
= fXQ(A)dNRZ(T)%wo\)
1
- Wi (5.130)
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which means that:

A, qr )y (N) = Xa(Ndpg,y - (5.131)
Hence:
@@ @@ = [ g (Nxa, Wxen (V)
[ X Wi
= (P, QT (U N M)y, (5.132)

which means that QT (Q2; N Q) = QT (21)QT (). Also, we claim that QT(Q)* = QT(Q).
This easily follows from QT(Q) = 0. Therefore, QT is an orthogonal projection.
Let us now prove that QT (R) = 14,. Suppose it is false, Q7 (R)1) # 1. Then, we write:

Y =Q R}y +¢ (5.133)

with ¢ € Ker QT (R). Then we have, for any ¢ € H:

0 = dpe.ormye = Xr(A)dpte o (A) (5.134)

which implies (¢, R.(T)¢) = 0 for all £ € H and for all z € C\R. Since C\R < p(T'), R.(T)
is invertible: for any n € H there exists £ such that R:(T)¢ = n. Therefore, ¢ = 0, thus
implying a contradiction: Q7 (R)y) = ).

Finally, we have to prove the strong o-additivity. For orthogonal projection, the strong
o-additivity is equivalent to the weak o-additivity, since |Qv| = (¥, Q¢) (hence |Qnv| —
[Q1] is implied by weak convergence). Let (€2,,) € B(R), such that Q, nQ,, = & for n # m.
Let 2 = U, Q,,. Therefore, for all ¢ € H, for N — oo:

N N
D@, QT (Q)Y) = Y () — 11y (Q) = &, QT ()W) (5.135)

where the convergence follows from the strong o-additivity of the measure 1. By polariza-
tion,

N
2@, QT (Q)e) — (¥, QT () (5.136)
n=1
for all ¥, ¢, which implies strong o-additivity. L]

In conclusion, starting from a self-adjoint operator T'(, D(T')) we constructed a PVM
P : B(R) — L(H) such that, for all z e C\R:

1

—_— . 1
— (5.137)

zuﬂ=j@m

This easily implies the spectral theorem for unbounded self-adjoint operators.

Theorem 5.52. For any self-adjoint operator (T, D(T)) there exists a unique PVM PT such
that:

D(T)={eH | fxzduw(x) <}, (5.138)

and:

T= f)\dp(/\) . (5.139)

Proof. Given the PVM constructed before, we know that A = § Adp()\) defines an unbounded
self-adjoint operator, with domain D(A) = D,. We claim that A = T. By construction:

Ru(T) = (T —2)~! — f dp(A)i . forzeC\R, (5.140)
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with R,(T) : H — D(T). We claim that D(T) c D,. This follows from the fact that for
any ¢ € D(T') there exists ¢ € H such that: (A —2)p = ®(A — 2)P(1/(\ — 2))¢ = ¢. Also,
(A —2z) DT — z, since, for any ¥ € Dy,

SN —2)P(1/ (A =2))p = P(1/(N=2)) (A —2)p =1 . (5.141)

This shows that ®(A —z) =T — z on D(T'), hence ®(A) o T. Using that both operators are
self-adjoint, we get ®(\) = T'. To prove uniqueness, notice that the measure p,; is uniquely
determined by R, (T) via the Stieltjes inversion formula. Uniqueness of PT follows from the
fact that it is uniquely determined by fiy. n

Finally, as one could expect, the projection valued measure associated with T is supported
on the spectrum of T'.

Theorem 5.53. Let T : D(T) — H be a self-adjoint operator, with projection-valued measure
PT :B(R) — L(H). Then:

o(T)={NeR|PT(A—g,X\+¢))#0, Ve > 0} . (5.142)

Also,
PT(a(T)) = 14, PT(R\o(T)) = PY(Rn p(T)) =0. (5.143)

Remark 5.54. The condition PT(Q) # 0 has to be understood as there exists 1 € H such
that PT(Q)y # 0.

Proof. Let \g € R, 0, = {\o — 1/n, Ao + 1/n}. Suppose that PT(Q,) # 0 for all n € N.
Then, for all n € N we can find v,, € RanPT (€2,,) with |1, = 1. We have:

(T = Xo)eonl® = (T = X0) PT ()b |
J|>\ — Xol*xa, N dpyg, (\) < % . (5.144)

Therefore, from the Weyl criterium, \g € o(T). This proves that {\ € R | PT((A—¢g, A\ +¢)) #
0, Ve > 0} € o(T). On the other hand, suppose that there exists ¢ > 0 such that
PT((Ag — &, X0 +€)) = 0. Define:

1
foQ) = 1= " XR\{Aog—e,h0+e} (A) - (5.145)

By the properties of the functional calculus,

(T = 20)®7(fo) = @T((A=Xo)fe)
= PTR\(A\g—¢&, X +¢))
= 1y —P"((Ao—¢c, o +¢))
= 14. (5.146)

Analogously, ®T(f.)(T — X\o)y = ¢ for all ¢p € D(T). Therefore (T — )\o) is invertible, and
Ao € p(T). This proves Eq. .

Let us now prove that P* (R n p(T)) = 0. For all A € R n p(T), let I, 3 A be an open
neighbourhood of A and PT(I,) = 0 (otherwise A € o(T), as we just proved). Let us cover
Rnp(T) with intervals I, and let {J,,},en be a countable subcovering. Let €2, = n\u?:_f J;.
so that {Q,} is a disjoint covering. By c-additivity of the projection valued measure,

PT(RAp(T)) = lim > PT(Q,)=0. (5.147)

Remark 5.55. Therefore, @7 (f) = P(o(T))®"(f) = ®" (Xo(1)f). That is, changing f on
R\o(T) does not change ®T(f).

60



5.6 Unitary equivalence of self-adjoint operators with multiplica-
tion operators

In this section we shall show that self-adjoint operators are unitarily equivalent to multipli-
cation operators. We say that two operators 7" on ‘H and T on H are unitarily equivalent if

there exists a unitary operator U : H — H such that UT = TU, with UD(T) = D(T).
Let v € H. Let P be a projection valued measure, generating a functional calculus @,
and a Borel measure p,, = (¢, P(Q)). Let

Hy = {P(9)0 | g€ L*(R,dpy)y < H . (5.148)

It is not difficult to see that H, is closed. Therefore, by Theorem we can split the
original Hilbert space as H = H,, (—B’Hi. In what follows, we shall denote by Py, the projection
onto Hy.

Lemma 5.56. The subspace Hy reduces ®(f):
Py®(f) < B(f)Py . (5.149)

Remark 5.57. That is, if ¢ € Dy then Pyp € Dy, i.e. PyDy < Dy. Also, for all p € Dy,
Py®(f) = ®(f)Pypp. We shall also say that Hy is invariant under O(f).

Proof. (Sketch). Suppose f is bounded. Any ¢ € H can be written as ¢ = Py + ¢+, with
Py = ®(g)1 for some g € L2(R, duy). We claim that ®(f)pt € Hi. In fact:

(@(f)p, @Ry = (™, ®(fR)Y) =0, (5.150)
because fh e L*(R,duy) since f is bounded. It follows that:
Py@(fle = Pp@(f)2(9)Y = Pp®(fg)¢
= (fg)v = 2(f)(9)v = 2(f)Pye . (5.151)
This proves the claim for bounded f. The case of unbounded f follows by an approximation
argument, we omit the details. n
Therefore, we can decompose ®(f) = ®(f)|, ®P(f )|Hi; this means that if ¢ = 1 + 2

with ¢1 € Hy and ¢o € Hw, then ©(f)p = ®(f)p1 + @(f)p2 with ®(f)p1 € Hy and

(I)(f)(pg € H
The domain of ®(f)|#, is defined as:

PyDy =Dy Hy = {@(9)¢ | g, fg € L*(R,dpy)} - (5.152)
On P, Dy the action of ®(f) is then given by:
o(f)®(9)v = (f9)v (5.153)

This implies that the operator ®(f) can be interpreted, when considering its action of H,
as a multiplication operator by f. To be more precise, we can define the map:

Uy : Hy — L*(R,dpy) , (5.154)

by setting Uy®(f)y = f. Since | ®(f)y| = |f|2, the map Uy is unitary. Furthermore, it
follows that:

UyD(®(f)ln,) = UpPyDs = Up(Dy o Hy) = {g € L2(R,dpy) | fg € L*(R,duy)} (5.155)

and:

Up®(f)ln, = fUy , (5.156)
where f also denotes the multiplication operator, (fg)(A) = f(A)g(A), with domain D(f) =
Uy D(®(f)[2,,)-
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We say that the vector v is cyclic if Hy = H. In this case the picture is complete: the
operator ®(f) is unitarily equivalent to the multiplication operator f, acting on its domain
D(f) = UyDy. In general however H, # H, and Eq. only shows that the restriction
of ®(f) on the space H,, (more precisely, on the dense domain H,,nDy) is unitarily equivalent
to multiplication with f.

What can we say about the restriction of ®(f) on the orthogonal complement ’Hi? Also

on 'pr‘ we can choose a vector ¢'; the corresponding space H, will again be invariant with
respect to the action of ®(f). We can iterate the procedure; {1;};cs is called a family of
spectral vectors, if Hy, L Hy, for all i # j. We say that a family of spectral vectors if a
spectral basis of H if H = @, ; Hy,. Such family always exists.
Lemma 5.58. Let H be a separable Hilbert space, and P and projection valued measure.
Then there exists a, at most countable, spectral basis {1;}je; with H = @jeJ Hy,. We can
define a unitary map U = @jeJ Up, - H— @jEJ L?(R, dpiy; ), where Uy, is defined as in Eq.
15.154)), through the identity Uy ®(f)w; = f. Then, for any Borel measurable f : R — C:

UDf = D(f) = G_){g € LZ(Radlu’wj) | fg € Lz(Ra dﬂdﬁ)} ) (5157)
jeJ

jeJ

and UD(f) = fU, where f acts as a multiplication on each component of ®c; L*(R, dpiy, ).

This last lemma shows, in particular, that any selfadjoint operator is unitarily equivalent
to the multiplication operator \: (Ag)(A) = Ag()).

Remark 5.59. Notice that the spectral basis is not unique, and its cardinality is not well
defined: there might exists different spectral bases with different cardinality. However, since
we are only considering separable Hilbert spaces, the cardinality of every spectral basis is at
most countable. The minimal cardinality of a spectral basis for a given self-adjoint operator
T, or more generally for a given projection valued measure P, is called the spectral multiplicity
of T (or of P). We shall say that the spectrum of T is simple if the spectral multiplicity of
T is one (this means that there exists a cyclic vector).

5.7 Decomposition of the spectrum

Let us start by reminding some well-known facts about Borel measures. For any Borel
measure p there exists a decomposition p = fiac + s, Where pi, is absolutely continuous with
respect to the Lebesgue measure (meaning that pac(2) = 0 for all € B(R) with Lebesgue
measure |Q = 0) while g is singular with respect to the Lebesgue measure (meaning that
there exists a set Q with |Q] = 0 and ps(R\Q) = 0).

The singular measure ps can be further decomposed as ps = fipp + fisc, Where ppp, is
pure point (meaning that the distribution function dp,(A) is a step function on R) and fiee
is singular continuous (meaning that the distribution function is continuous on R).

The measures fiac, fisc, fpp are mutually singular: there exist disjoint sets Mac, Mpp, My ©
R such that pi,. is supported on M, ppp is supported on My, and g is supported on M.
Observe that the choice of the sets M,q, My, My, is not unique: one can always add sets
with zero p measure. We will choose My, as the set of all jump points of the distribution
function p(A) and M, with Lebesgue measure equal to zero.

At first, suppose that the spectrum of 7" is simple, and that v is a cyclic vector. Let P =
PT be the projection-valued measure associated to T', and let p = ,ui be the corresponding
spectral measure. We then introduce the orthogonal projections:

Poe = ®(xm,.) s Poe =P(XM.), Pop = (I)(XMpp) ) (5.158)
such that P, + Psc + Ppp = 13. By the orthogonality of the projections, we write:
H= Hac@HSC®pr s (5159)

with Hy = PyH. Recall that the Hilbert space H = H,, is unitarily equivalent to L?(R, du),
UypHy = L*(R,duy). Writing UpHy = Uy (Pac + Psc + Pyp)Hy and using that Up U =
X, we get the following orthogonal splitting:

L*(R,dp) = L*(R, djtac) @ L*(R, dpse) ® LA(R, dppp) - (5.160)
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This means that every function g € L?(R,dp) can be written as g = gac + gsc + gpp, With
gs = 9|, Being the sets My disjoint, the functions appearing in the splitting are orthogonal.
Notice that, by construction, if ¢ € My, then u, = py 4, with § = ac, sc, pp. In fact, being 1
cyclic, ¢ = ®(gy)tp for some g5 € L*(R, dpy), and dpy(N) = |gs(A)[Pdpy (N), with g4 supported
in Mﬁ.
Also,
T = (TPs)@® (TPs)® (TPyp) - (5.161)

We define the absolutely continuous, singular continuous and pure point spectrum of 7" as:
Gac(T) :=0(TP,) , 0sc(T) := 0(TPs) , opp(T) :=0(TPyp) . (5.162)

Being the subspaces Hjy invariant under T', we have PyT'Py = T'P;. Hence, T'P; are selfadjoint,
and oy(T) are closed subsets of R.

Remark 5.60. One has 0,(T) < 0,,(T), with o,(T) the set of eigenvalues of T. This also

implies 0,(T) € opp(T). It is possible to prove that op,(T) = op(T'). See next example.

Example 5.61. Let H = (*(N), let TS, = %&L with 0, the sequence equal to 1 at the
n-th place and zero otherwise. That is T is a diagonal matriz with elements 1/n. Then,
op(T) ={1/n| neN}. We claim that

o(T) = 04(T) = 7,(T) U {0} = 7, (T) . (5.163)

We claim that {0} belongs to o(T'). To see this, notice that T is injective, but not surjective:
not every vector in £2(N) can be written as T for some ¢ € (?(N). Finally, notice that all
points z € C which are not in {1 | n e N} U{0} are in p(T). This simply follows by computing
the resolvent: n

T—2)716, = On 5.164

(-2 = (5,164
and observing that (T — z)~* is bounded for all z € {+ | n € N} U {0}. Therefore, o(T) =
op(T) v {0}. At the same time, we know that o(T) = 0pp(T) U 04c(T) U 05.(T). Being
0p(T) € opp(T) with o,(T') open and opy(T) closed, it follows that op,(T) U {0} = 0, (T).

Example 5.62. An example of purely absolutely continuous spectrum is obtained taking p
to be the Lebesque measure. An example with purely singular continuous spectrum is given
by taking p to be the Cantor measure.

To conclude, we are left with discussing the case in which the spectrum of T is not
simple. In this case there is no cyclic vector, and we need to introduce a spectral basis. After
introducing such basis, the operator T' is unitarily equivalent to a multiplication operator,
after conjugating with the unitary map: UH — @®;L*(R, dpy; ). In general, however, it is
difficult to exclude that the splitting depend on the choice of the spectral basis. For
this reason, we introduce the following definition of spectral subspaces of H:

Hae = { €H | py is absolutely continuous}
Hee = {¥€H| uy is singular continuous}
Hep = {¥€H|py is pure point} . (5.165)

Lemma 5.63. We have:
H= HGC®HSC®pr . (5166)

As for the simple case, the absolutely continuous, singular continuous and pure point
spectrum are defined as:
oy(T) = o(Tly,) = o(TFy) (5.167)
where P; is the projector over Hy.
To conclude, we discuss a simple consequence of the fact that o,,(T) = m.

Proposition 5.64. Let (T',D(T)) be a selfadjoint operator. Suppose that ¢ € Hp,. Let
(pj)jen be the eigenvectors of T', T; = N\jp;. Then, there exists (a;) < C such that

N—w

N
lim Hz/; ~ Y aje H -0. (5.168)
j=1
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Proof. The proof immediately follows from the fact that My, = M, with M, = {A € R |
A is an eigenvalue of T'}. Therefore, Hy, = ¢(xar,)H = PoH is dense in Hyp,. u

Remark 5.65. Recall that A\; # A implies that {¢;, pr) = 0. This follows from, for e > 0:

1 .
{pjspr) = m<%’ (H +icly)pr)
1 .
= —((H —icly)py, pr)
Ak +ig
N —i€g
= )\i m Z-€<80j7%0k> (5.169)

which implies that {p;, iy = 0 (since A;, \p € R, the ratio in the r.h.s. is #1).

To conclude, let us discuss a simple example of self-adjoint operator with purely absolutely
continuous spectrum.

Example 5.66. The Laplacian (—A, H*(R%)) is a selfadjoint operator, with.:
0(—A) = 04(—A) =[0,00) . (5.170)

The selfadjointness of the Laplacian has been proved in Section[/.3, using that it is unitaril
equivalent to multiplication by |k|?> (real-valued measurable function), recall Lemma @
Also, o(—A) = [0,00), since (—A) = o(F(=A)F 1) = 0(A4s2), and 0(As2) = [0,00), since
k> (k% — 2)71 is a bounded function for all z ¢ R\[0, o0).

Let us now prove that o(—A) = o4.(—A). To do this, it is enough to show that the
spectral measure [ty 1s absolutely continuous with respect to the Lebesgue measure, for all
e H?(R?). Observe that, for all 1 € L>(R?), z € p(—A):

| , (k) (.
@R 800) = e = [ e [ T anu (5.171)
where
dfiy(r) = X[0,0) (r)rd’l(Ld_l [(rw) P ) dr (5.172)
After a simple change of variables, we have:
1
(W, Ra(— D)y = fR (Y (5.173)
with py(X) given by:
1 d N
(V) = 5Xp0.m) WA ( j BV Aw) 2w dA (5.174)
gd—1

This measure is absolutely continuous, since it is of the form duy(X) = f(A)dX, with f €
LY(R9,d)\) given by:

£ = 3xt0 M (|

2 Sd—1

Izﬁ(ﬁw)\zdw””) . (5.175)

Absolute continuity of the measure follows from the fact that the integral of an LP function
over a set with zero Lebesque measure is zero.

6 Quantum dynamics

In this section we shall apply the spectral theorem to study solutions of the Schrédinger
equation:

i0p(t) = H(t) (6.1)

where H is a selfadjoint operator, the Hamiltonian, defined on a domain D(H) < H.
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6.1 Existence and uniqueness of the solution of the Schrodinger
equation

In the next theorem we shall prove that the solution to this equation is given by () =
U(t)(0), with U(t) = exp(—iHt), define via functional calculus:

e Mt — fe_i’\tdp()\) , (6.2)

with P the projection-valued measure associated to (H, D(H)).
Theorem 6.1. Let (H, D(H)) be a selfadjoint operator and let U(t) = e *Ht. Then:

(i) U(t) is a strongly continuous one-parameter unitary group.
(i) The limit:

exists if and only if v € D(H). In this case:

lim S[U(t) — L]v> — —iHe . (6.4)

t—0 t
(iii) We have U(t)D(H) = D(H) and, on D(H), [U(t),H] =0 for all t € R.
Remark 6.2. That is, H is the generator of U(t), recall Definition ,

Proof. Let us prove (i). The spectral representation of U(t), Eq. (6.2)), together with the
rules of functional calculus, implies that U ()~ = U(¢)*, and that U(t + s) = U(t)U(s) for
all ¢, s € R. To prove that U(t) is strongly continuous, fix ¢ € H and consider:

thr? He—th,(/} _ e—thowHQ _ thr? J|e—i)\t _ e_i)\Ot|2dM’¢J()‘) =0 (65)
—10 —1o

by dominated convergence. This proves (i). Let us now consider (ii). Suppose that ¢ €
D(H). Then, we have:

lim |-

. 2 . 2
lim H (e — 1)y + szH - thr%ﬂ%(e*m — 1)+ x| dup(A) =0,  (6.6)

again by dominated convergence. Here we used the bound |e=*** — 1| < [t\| and the fact
that, since v € D(H):

J/\Qdﬂw(/\) <. (6.7)

One the other hand, define the operator H : D(H) — H by:

D) = {4+ lim LU0~ 9] exists) (6.9)
and by:
By =l U () — ] (6.9)

for all ¢ € D(PNI ). The operator H is the generator of the one-parameter group U(t). It
follows from Eq. that H ¢ H. Moreover, for all ¢,1 € D(H) we have:

~ . i . —1 ~
We conclude that H is a symmetric extension of H. However, self-adjoint operators are

maximal: they do not have symmetric extensmn which means that B = H. This proves
(ii). The proof of (iii) follows from Proposition [3.79 (ii). u

Suppose that H < H. Then, by Proposition 1| H* < H. Also, being H symmetric, by Proposition m
Hc H*. That is, HCH hence H = H.
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Therefore, it follows from Eq. (6.4) that, for 99 € D(H), the vector ¢ (t) € U(t)1o with
U(t) = e~ is a solution of the Schrédinger equation with initial datum (0) = 1. In fact:

%[U(t +h) = U(0)]o = Jim %[U(h) U = HU®Rbo  (6.11)

because U (t)yg € D(H) if 19 € D(H). Tt turns out that U(t)ty is the unique solution of the
Schrédinger equation.

Lemma 6.3. Let ¢g € D(H) and let 1(t) be a solution of the Schrédinger equation with
initial datum 1(0) = o. Then ¥ (t) = U(t)o.

00 (£)o = lim

Proof. Let 1(t) be a solution of the Schrédinger equation. In particular, ¢(t) is differentiable
and 9(t) € D(H) for all t € R (or for all ¢ in the time-interval on which () is a solution).
Let ¢(t) = U(—t)y(¢t). Then:

iopp(t) = limE[U(—t—e)w(t

tim - + &)~ U(-)0()
~ lim [iU(—t Y e Ei —v) z’U(_i_) —1 U(—t)z/)(t)] . (6.12)

Since 9 is differentiable and U is strongly continuous, we have, as ¢ — 0:

Pt +e) —9(t)

iU(—t —¢) e

iU (=)0 (t) = U(—t) Hp(t) = HU(—t)(t) . (6.13)

On the other hand, ¢(t) € D(H) implies that U(—t)1(t) € D(H) and therefore that:

in(—t)w(t) L CHU(—t)(t) . (6.14)

We conclude that ¢'(t) = 0 for all ¢ and therefore that ¢(t) = ¢(0) = ¥(0) = 1. Hence,
P(t) = U(t)do. =
Remark 6.4. Since D(U(t)) = H, the dynamics can be extended to all initial data o € H.
However, notice that U(t)ig is a solution of the Schrédinger equation if and only if v €
D(H).

6.2 Stone’s theorem

In the previous section we proved that any self-adjoint operator generates a unitary evolution.
Conversely, Stone’s theorem shows that any strongly continuous one-parameter unitary group
U(t) is generated by a selfadjoint operator such that U(t) = et

Theorem 6.5. Let U(t) be a weakly continuous one-parameter unitary group. Let H :
D(H) — H be the generator of U(t), defined by:

D(H) = { e M | im (U —v]  eaist) (6.15)
and by: .
Hy = lim %[U(t)z/} — ] for allye D(H). (6.16)
Then, H is selfadjoint and U(t) = e~*Ht,

Proof. First of all, we notice that the weak continuity of U(t) also implies strong continuity,
since, for any ¥ € ‘H and for t — tg:

[U)¢ = Ulto)v|* = 2|¥|* — 2Re (v, U (to — t)1) — 0 (6.17)

if U(tg —t) — 1 weakly. Next, we claim that D(H) is dense in H. For any ¢ € H and 7 > 0,
we set:

by = JT U(t)dt . (6.18)
0
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This implies that 7714, — 1) as 7 — 0. In fact, given & > 0, by the strong continuity of U (t)
we can find ¢o > 0 such that |U(¢)y — ¢| < e for all 0 < ¢ < ty. Then, for all 0 < 7 <ty we
have:

=l < 1 | W0Ow— vl << (6.19)

Since £ > 0 is arbitrary, this shows that 7711, — 1. Moreover, we claim that 1, € D(H).
In fact, for any 7 > 0, we have:

LU v = fTU(s)wds— J(:U<s>¢ds]

_ %[ J T U sywds Jt U (s)uds]

T 0

1 t

= (U(r) - ]l);f U(s)ypds — [U(1) — 1]y, ast — 0. (6.20)
0

This implies that 1, € D(H). Hence, for arbitrary ¢ € H, we found a sequence 719, €

D(H) with 7714, — 1. This proves that D(H) is dense. Next, we show that H is essentially

self-adjoint. From Corollary it is enough to check that Ker (H* +¢) = {0}. To this

end, suppose that H*¢p = Fip. Then, proceeding as in the proof of Theorem (#i1), for
any ¢ € D(H), we have U(t)y € D(H) for all t € R and therefore:

L0, Uty = (o, ~HU(W) = —CH*0,U(t)) = £, UMW) . (621

Hence,
{p.Ut)y) = e*{p, ) . (6.22)

Since the left-hand side is bounded, uniformly in ¢ € R, we must have {p,%) = 0. Since
v € D(H) is arbitrary and D(H) is dense, we conclude that ¢ = 0. Therefore, H is essentially
selfadjoint, and its closure H is selfadjoint. We can therefore define the one-parameter group
V(t) = e7H* We claim now that V(t) = U(t). This would also imply, by Theoremthat
H = H (because it would imply that D(H) = D(H)) and therefore it would conclude the
proof of the theorem.

To show that indeed V' (¢) = U(t), we pick ¢ € D(H) and we set 1(t) = U(t)y — V().
Then, we compute:

ii—{% M = ll—{% %S_H)U(t)w — il—{% Wv(ﬂw
= HU(@t)Y —iHV (t) = iHy(t) (6.23)

where we used that U(t)y € D(H) it ¢y € D(H), V(t)y» € D(H) if v € D(H) < D(H), and

that HU (t)y = HU (t)y for ¢ € D(H) (because H is an extension of H). We obtain:

d , d —
1Y@ = 2 @), ¥ (1)) = 2Re (W (1), iHY(1)) = 0 (6.24)

since (¢ (t), Hi(t)) € R (which follows from the fact that H is selfadjoint). With (0) = 0,
it follows that 9 (t) = 0 for all ¢ and therefore that U(t)y = V() for all ¢» € D(H). Since
D(H) is dense in H and U(¢), V(t) are unitary (in particular, bounded), this also implies
that U(t) = V(t) on H. u

6.3 The RAGE theorem

There is an interesting relation between the spectrum of a selfadjoint operator H and the
properties of the quantum dynamics U (t) = e~*#*. This relation is summarized in a theorem
due to Ruelle-Amrein-Georgescu-Enss. The goal here is to understand, based on the spectral
properties of H, whether a quantum system whose evolution is generated by H remains
confined in a bounded region for all times or whether instead it moves to infinity as ¢ — co.
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A first simple observation is as follows. Let H be a selfadjoint operator, and Hac, Hsc,
Hpp the corresponding spectral subspaces, so that H = Hac @ Hse ® Hpp-

If ¢ € Hac, then the spectral measure p, is absolutely continuous with respect to the
Lebesgue measure. This also implies that pu, . is absolutely continuous with respect to
Lebesgue, for all ¢ € H, since

[t ()] = s PO < <o, POI2 I, POV = 1o ()2 ()2 . (6.25)

Therefore, setting U(t) = e~ *H* we find:

(o, Ut = f M, () =0 ast — o, (6.26)

by the Riemann-Lebesgue lemma. This is because any Borel measure p which is absolutely
continuous with respect to Lebesgue can be written as du(A\) = f(\)d\, with f € LY(R, d\)
and d\ the volume measure. In fact, by Theorem

{p, Ut)y)y = fe*i’\tfwz,()\)d)\ = f%w(t) —0 as t — 0. (6.27)

This means that, if ¢ € H,c, the time evolved state U (¢)1) becomes orthogonal to any fixed
@ € H, ast — o. This of course cannot be true for all ¥» € H. In particular, if ¢ is an
eigenvector of H, that is if Hy = E, one has:

K, U@l = K9yl ,  forall teR. (6.28)

A more exhaustive understanding of the asymptotic behavior of (¢, U(t)¢) in the limit of
large t is provided by the following theorem.

Theorem 6.6. [Wiener] Let u a finite complex Borel measure on R and:

Alt) = f =) . (6.29)
R
Then, ,
lim lf HPdt = 7 [u({A))? (6.30)
AeR

where the sum on the r.h.s. is finite (because p is a finite measure).

Remark 6.7. Recall that any Borel measure has can be written as o = floc+ ftsc+ fpp. Also,
SINCE e, fhse have continuous distribution, p({\}) = ppp({\}). Therefore, Y\ g [H({A})|* =
Yer lHpp({AD)|?. The sum is over the support of My, of the pure point measure fi,,, which
is a countable set. This follows from the fact that My, = |\, ey Mn with M, = {\ € R |
w({A}) > 1/n} = {A e R | pupp({A}) > 1/n}. Each set M, is countable and finite: otherwise,
w(My) = oo, which is impossible since i is finite. Therefore, My, is the countable union of
finite sets, and hence it is countable.

Proof. We apply Fubini’s theorem to write:

J]R J]R [% LT 67i(zfy)tdt]dﬂ(z)d@- (6.31)

Since

(T,
— - <‘”‘y)dt‘ <1 6.32
‘T fo € ( )
and, as T — oo:
1 T i 0 ifzx#
il —i(z—y)t , Y
TL © dt { 1 ifx=y. (6.33)
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Therefore, by dominated convergence:

: j OFdt = | | xioy(e = w)dute)dnt) = [ ntohdate) = ¥ et (63

yeR

Let us now apply this theorem to study the quantity |(p, U(t)¥)|, describing the proba-
bility of finding the evolved state in the state ¢ at time t. If ¢ € Hoe ® Hge and ¢ € H is
arbitrary, the measure p,  has not atoms, i.e. it is such that p, ,({\}) = 0, for all X € R.
Therefore, by Theorem

lim lf [(p, ety 2dt = 0. (6.35)

Hence the probability of finding the evolved state in ¢ tends to zero, but only in an averaged
sense.

Notice that (@, U(t)y)|* = |P,U(t)1|?, with P, the orthogonal projection onto ¢. We
can extend Eq. to a more general class of operators, called compact operators. Com-
pact operators are the natural generalization of finite-rank operators, that is operators that
can be written as finite linear combination of orthogonal projectors. In the following, we
shall denote by B1(0) the unit ball in H, that is:

Bi(0) ={ypeH|[v]<1}. (6.36)

Definition 6.8. An operator K € L(H) is called compact if KB1(0) € H is pre-compact in
H, that is if KB1(0) is compact.

Remark 6.9. (i) Equivalently, an operator K € L(H) is compact if and only if for any
bounded sequence i, € H, K1, has a convergent subsequence.

(i) The space of all compact operator K(H) is a closed linear subspace of L(H). Also, K*
is compact if K is compact, and KA, AK are compact if K € K(H) and A € L(H).
Furthermore, compact operators can be approrimated in norm by sequences of finite
rank operators.

Definition 6.10. An operator K : D(K) — H is called relatively compact with respect to
the self-adjoint operator H if there exists z € p(H) such that KR,(H) = K(z — H)™! is
compact.

Remark 6.11. (i) Using the first resolvent identity, R,(H)—R.,(H) = (z—29)R,(H)R,,(H),
one can check that if KR,(H) is compact for one z € p(H), then it is compact for all
z€p(H).

(i1) If K is relatively compact with respect to H, then D(H) < D(K), because every ¢ €
D(H) can be written as ¢ = Ra(z)p for a ¢ € H.

The results (6.27)), (6.35) can now be extended as follows.

Theorem 6.12. Let H be a selfadjoint operator. Let K be relatively compact with respect
to H. Then, for allv € D(H):

1 (" ,
lim — f |Ke "t P(H)p|?dt =0, (6.37)
T—oo T 0

where Po(H) = Py.(H) + Ps.(H) is the orthogonal projection onto Hae @® Hse. Also, for all
v eDH):
lim |Ke ™ P, .(H)p|*> =0 . (6.38)

t—o0

If we also assume that K is bounded, then Eqs. , hold true for any ¢ € H.
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Proof. To prove Egs. (6.37), , we can assume that ¢ € H. and, respectively, that
1) € Hac, and drop the orthogonal projections. If K is a rank-one projector, the claims follow

from Eqgs. (6.27), (6.35). If K is a finite-rank operator, K¢ = Z;-lzl a;j{pj, Pyp; for an
©1,--

orthonormal family ., ¥n}, then:

[ Kem |2 = 3 [y, e i) (6.39)

Jj=1

and the problem reduces to the rank-1 case. If K is compact, we can find a sequence of
finite-rank operators K,, with |K — K| < 1/n. Then:

[ Ke ™) < 2| Kpe 9[> + 2072y (6.40)

and the problem reduces to the finite-rank case (by choosing first n large enough, and then
T or t large enough). Finally, it K is relatively compact with respect to H and ¢ € D(H),
we write 1) = (H — z) 1€ for a € € H (notice that, if ¢ € H. or 1) € Hac, then also & € H, or,
respectively, £ € H,.). Thus, it is enough to apply the result for compact operators to the
operator K(H — z)~!, because the operator (H — 2)~! commutes with e~#7t, u

Example 6.13. A simple application of these results is obtained by taking H = —A and K
the multiplication operator X o) (x). It turns out that the operator K is relatively compact
with respect to H. More generally, one can prove that all operators of the form f(iV)g(%),
or g(2)f(=iV), for f,g € Cn(R™) and g(—iV) = F1g(k)F are compact. In our case,
9(z) = XBr(o)(®) and f(k) = (k* + 2)~', with z € C\R.

Since H has purely absolutely continuous spectrum, we conclude that:

IXBro€e™ ¢ =0  ast— o, (6.41)

for every ¢ € H and for every R > 0. In other words, if the evolution is generated by the
Laplace operator, the probability that the system is found in a ball of radius R around the
origin decays to zero as t — o0, for all R > 0 and for all initial data ¥ € H: the system
moves to infinity.

As we will see later, more realistic Hamilton operators have the form H = —A +V,
for a potential V.. Depending on the form of V, the spectrum of H may contain absolutely
continuous, singular continuous and pure point parts. Taking again K = x g, ) (x) (which is
still relatively compact with respect to H, at least for reasonable choices of V'), we conclude
that

IXBr) (@e Y| -0 ast— oo, (6.42)

if Y € Hye, that:
1 (" »
T f IXBR@) (@)e PPt -0 ast— oo, (6.43)
0
if 0 € Hoe ® Hse, and that:

IxBa) @)™ | = IXBro)¥] = I¥] (6.44)

as R — o0, if 1 is an eigenvector of H. In other words, if the initial data v is an eigenvector
(hence, it belongs to Hypy), its evolution remains localized within a ball of radius R, if R is
large enough.

If 9 is contained in the spectral subspace H,s of H, the its evolution moves to infinity,
while if it is contained in the spectral subspace H., with possibly a component in Hsc, the
probability for finding the state within a ball of radius R still goes to zero, but only in an
average sense.

It turns out that the behavior of |Ke~ )| can be used to dynamically characterize the
spectral subspaces H. and Hy,, associated with H.
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Theorem 6.14 (RAGE theorem). Let H be a selfadjoint operator and suppose that K,
is a sequence of relatively compact operators with respect to H, converging strongly to the
identity. Then:

I P
B . — —iHt, ) _
i = {oen it 7 [l <o)
Hy = {pe| limsup|(1— Ky)e #ty| =0} . (6.45)
n—>OOt>0

Proof. Pick first ¥ € H.. By Cauchy-Schwarz and by Theorem we find:

1 (T , 1 (r ; 1/2
—f | Kpe~ i Htp|dt < [f f HKne—lez/;H?dt] —0 (6.46)
T 0 T 0
as T"— oo. Hence:
1 (7 "
: — —iHt 1 _
He < {w eH| {w eH| Jim lim TL [ Hne™ || 0} . (6.47)

On the other hand, suppose that ¢ ¢ H.. We want to show that:

1 (T »
TL | K e |2 dt (6.48)

does not converge to zero, if we let first T' — o0 and then n — 0. Since ¥ ¢ H., we have
Y = e + Ppp, for a b, € He and for ¢y, € Hpp, with 1y, # 0. Since |K,e | >

| Kne= | — [ Kne~ )| and since we know that:
I :
lim TL | K=ty dt = 0, (6.49)

it is enough to show that

(T »

7| 1 (650
does not converge to zero, it T — o0 and then n — c0. To prove this, we shall show that:

sup | K e My, — e iy — 0 (6.51)

as n — o0. If this is true, we obtain that:

1 (7 . By p
TJ;J | K e ZHtwppHdt = ||1/JppH - igg | Kre ZHt{/’pp —€ 1Ht¢PpH - prp” >0 (6.52)

as n — o0, which implies the claim. To show (6.51]), we use that 1, can be approximated
by a sequence ¥y, having the form:

N
I (6.53)
i=1

where (¢;) en are orthonormal eigenfunctions of H, associated with eigenvalues \;, recall
Proposition [5.64] This implies that:

N
ey = 2 aje” Nt (6.54)
j=1

Hence, for every fixed N, as n — o0:
N

sup | Kne™ Ty — ey < D oyl Kngy — @i > 0, (6.55)

teR j=1
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because K,, — 1y strongly. Since, on the other hand, |e™*# 4, —e " Hihn | = |1hpp—1n | —
0 and also:

HKne_thpr - Kne_thwNH < HKnHHlbpp —¥n| < CHU’pp — YN[ —0 (6.56)

as N — oo, uniformly in ¢ and in n, we obtain Eq. (6.51]). (We used that strong convergence
of K, to 1y implies that (K,) is a bounded sequence, whose proof is left as an exercise).
This proves the first identity in Eq. (6.45). Let us now prove the second identity. The
inclusion:

Hpp © {¢ e H | lim sup |[(1y — K,)e iy = o} (6.57)
n—0o0 t;o

follows from Eq. (6.51). Conversely, it ¢ ¢ Hpp,, then ¢ = e + 1y, for Y € He, with ¢ # 0.
Applying again Eq. (6.51)), it is enough to show that

sup |(1y — K,)e "t does not converge to zero as n — 0. (6.58)
t=0

To this end, let us proceed by contradiction and assume that sup, |[(1y — K, )e | — 0
as n — 00. Then, we would conclude:

: 1T —iHt
0 = T}E&TIE’%O*L (T3 — Kn)e™ e dt
1 (7 ,
> el = Jim Jim 7 | e = s > 0 (6.59)
which is a contradiction. u

7 Perturbations of selfadjoint operators

7.1 Kato-Rellich theorem

Often in quantum mechanics one has to deal with perturbations H of simple reference oper-
ators Hy. As an example, one might consider Hamiltonians of the form H = Hy + V, with
Hy = —A and V = V(&) a multiplication operator, describing an external potential.

Perturbation theory aims at establishing properties of H, starting from the properties
of Hy, assumed to be well-known. Of course, to reach this goal, we will also need some
information about H — Hy. For example, it is easy to check that if H — Hy is bounded and
seldadjoint, then H is again selfadjoint (provided Hj is selfadjoint). More generally, in this
section we will show that relatively bounded perturbations of self-adjoint operators remain
self adjoint (if the relative bound is less than one).

Definition 7.1. Let A: D(A) — H, B : D(B) — H be two densely defined linear operators.
We say that B is relatively bounded with respect to A (or A-bounded) if D(A) < D(B) and
if there are constants a,b > 0 such that:

|BY| < a Ag|| + bl (7.1)

for all v € D(A). If B is relatively bounded with respect to A, then the infimum over all
a > 0 such that Eq. holds true is called the relative bound of B with respect to A (or the
A-bound of B). If the A-bound of B is zero, then we say that B is infinitesimally A-bounded.

The next theorem is the main result of this section.

Theorem 7.2 (Kato-Rellich). Let A be self-adjoint and B a symmetric operator, bounded
with respect to A and with A-bound less than one. Then, A+ B defined on D(A+B) = D(A) is
selfadjoint. The statement remains true if we replace everywhere selfadjoint with essentially
selfadjoint. In this case, we have D(A) = D(B) and A+ B = A + B.

Proof. We shall only consider the case in which A is selfadjoint. We shall prove that Ran (A+
B+ iX\g) = H for a suitable A\g > 0. This implies that (A 4+ B)/\o is selfadjoint, hence that
A + B is selfadjoint.
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Let ¢ € D(A). We have, for every A > 0:
[(A+X)g|? = [Apl? + X2[e]* . (7.2)
Being A selfadjoint, (A +4i\)~! is bounded. Setting ¢ = (A+1i)\)~ 11, we have, for all ¥ € H:
[1? = JAA+a0) T2 and 9?2 A2(A+ i) T el (7.3)

Therefore, || A(A +iA)7! < 1 and |(A +4iA)~!| < A7, From the relative boundedness, it
follows that, for ¢ = (A + iX\)~te:

b
[B(A+iN) 9l < al A+ i) +0l(A+iN Y] < (a5 )l (74)

Choosing A\g > b/(1—a) > 0 (recall that a < 1 by assumption), it follows that | B(A+i\) ™| <
1. Therefore, by the Neumann series

Iy + B(A+iX) ' =1y — (=B(A+iXo)™h) (7.5)

is continuously invertible, and hence Ran (13, + B(A + i\g)~!) = H. Using that, for all
v € D(A):

(I3 + B(A+iX0) D (A+iX)p = (A+ B +iXo)p (7.6)
and that Ran (A + iAg) = H (recall that A is selfadjoint), we find Ran (A + B + i)\g) = H.
The same argument applies for —i\g; this proves that A + B is selfadjoint. n

Let us now discuss applications of the above theorem. We will be interested in operators
of the form H = —A + V(£). We will use the Kato-Rellich theorem to establish under which
conditions on V' the operator H is self-adjoint.

Theorem 7.3. (—A-bounded potentials on R3.) Let V : R® — R, with V € L*(R3) +
L*®(R®), that is one can write V. = Vi + Vo with V. € L? and Vo € L®. Then, V is
infinitesimally Hy-bounded, with Hy = —A on D(Hy) = H?(R3). In particular, the operator
H = Hy +V is selfadjoint on D(Hy).

Proof. Let D(V) = {¢ € L? | V4 € L2}. D(V) contains C*(R9), and it is therefore dense
in L?. Let V =V, + V5 with V; € L? and Vi, € L®. Then, by the Sobolev lemma any
function ¢ € H2(IR?) is continuous and bounded. Therefore:

IVelra@s) < leloolVillzz@sy + [Val Lo @s) 2]l 2 rs) 5 (7.7)

that is, H2(R?) = D(V). The next lemma will allow us to complete the proof of infinitesimal
boundedness of V' with respect to —A. [

Lemma 7.4. For every a > 0 there exists b > 0 such that for all ¢ € H*(R3):

lello < allAplzz + bl L2 - (7.8)

Remark 7.5. Eq. (@ together with Eq. concludes the proof of infinitesimal bound-
edness of V' with respect to —A.

Proof. By Cauchy-Schwarz inequality:

lelle < 10er = (1 +E*) (1 + &)@ s
< @ F) T L2 (1 + K@ 2
< O(IK°@] 2 + [2lz2) - (7.9)
Setting @, (k) = r>3(rk), one has:
H@r||L1(R3) = H@HLl(RS) for all » # 0. (710)
At the same time, we also have:
~ 3 A
1802 mey = 77 |l L2Re) (7.11)
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and: )
1K22r L2 @sy = v 2 |K* @l 2(rs) - (7.12)
All together, we have:

lele < 1@ler = 18020 < CUIR*GrlL2 + 180l 22)
= Cr kGl + O3B e
= Or#|Agle + Crifeles (7.13)
Being r a free parameter, the claim follows. L]
Example 7.6 (The Coulomb potential). Let V(z) = —1a1 be the Coulomb potential (and —e
the electric charge). We write:
e e e
Viz) = — % = _ £ _ €
= Vi+Va, (7.14)

where V; € L2(R?) and Vo € L®. Therefore, the previous results imply that H = —A — \76| 18

selfadjoint on H?(R). Analogously, it is possible to check that the N-body Hamiltonian:

N
€k

H = ~A — __ I8 7.15

- J |$j — ( )

Jj=1 i<k

is a selfadjoint operator on H?(R3M).

If the operator A is bounded below, under the same assumptions of Kato-Rellich theorem
one can also prove that A + B is bounded below. We will not discuss the proof of this fact.
Instead, we shall focus on a special important case, the one of the hydrogenic atom:

A
H=-A—2 7.16

on D(H) = H?R?). As we proved above, this operator is selfadjoint on H?(RY). The
parameter Z > 0 plays the role of nuclear charge (here we set e = 1). We will prove that
this model is stable, in the sense that the Hamiltonian is bounded below by a constant. We
shall prove an optimal lower bound which matches the ground state energy of the model,

_ o O HY)
B = peilian o0y

Notice that this is very much in contrast with what happens in classical mechanics. Clas-
sically, the Hamiltonian H(p,q) = p* — Z/|q| is not bounded from below: one can lower
the energy by taking the electron closer and closer to the nucleus (that is, sending |g| to
zero, and choosing p = 0). In quantum mechanics, we know from the uncertainty principle,
Eq. , that particles cannot be simultaneously localized both in space and in velocity:
this ultimately means that a particle that is very close to the nucleus should have a large
kinetic energy. The compensation between these two energies is ultimately responsible for
the stability of the hydrogenic atom, and more generally for the stability of matter. This
heuristic principle is captured by the following inequality.

(7.17)

Lemma 7.7 (Coulomb uncertainty principle.). Let H € H'(R?). Then:

1
Jdﬂf mld)(fﬂ)l2 <[Vl r2@s) [¢] 2rs) - (7.18)

Before discussing the proof, let us use this lemma to prove the stability of the hydrogenic
atom.
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Proposition 7.8. Let v € HY(RY), Ey = (¢, H). Then, the following inequality holds
true:

22
Ey > == [vl; - (7.19)

Equality is reached for ¢ = Ke~ 2/l

In particular, this proposition proves that Fgg = —Z; (recall that H?(R?) = H'(RY),

which follows from the definition of Sobolev space, Definition together with |k| <
(1/2)(1 + |k|?)). This inequality proves the stability of the hydrogenic atom.
Proof. (of Proposition [7.8]) Suppose that ||1|; = 1. By Lemma [7.7] we have:

Z2

v = VY5 = ZIVile = -, (7.20)

as it follows from z°? — Zz = (x — Z/2)? — Z%/4. Equality for ¢ = Ke~(#/9Izl is left as an
exercise. u

To conclude, let us prove Lemma [7.7]

Proof. (of Lemma ) The starting point is the following identity:

<w, = > @l z], w>, (7.21)
j=1,2,3
where we used that: )
€5 1 x5
Op, 2| = — — L. 22
o ) = (7.22)

Therefore, integrating by parts:

1
Xy = = N (@t i + (v 0e0)
1,2,3
J=1542,
:_mez<%mﬁw
7=1,2,3

N

QZK%ijWM
J

By Cauchy-Schwarz inequality:

1 T
2 wviw < 2 axjw 2 711#
G < 2Rl ],
1/2
2
2@]%wp)(2hﬂ )

< 2[Vela |9l - (7.23)
This concludes the proof. L]
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