Mathematical Quantum Theory Exercise sheet 1 26.10.2018 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points] Consider a quantum system, whose wave function $\psi(t)$ at the time t is a vector in \mathbb{C}^2 . Suppose that the Hamiltonian is given by:

$$H = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} . \tag{1}$$

Find the solution of the initial value problem:

$$i\psi(t) = H\psi(t)$$

$$\psi(t_0) = \psi_0 .$$
(2)

Exercise 2. [10 points] Let $f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R})$, such that $f' \in L^1(\mathbb{R})$.

- (a) Show that $f \in C_{\infty}(\mathbb{R})$.
- (b) Show that, for $g \in L^{\infty}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ and $g' \in L^{\infty}(\mathbb{R})$, the following identity holds true:

$$\int_{\mathbb{R}} dx \, g(x) f'(x) = -\int_{\mathbb{R}} dx \, g'(x) f(x) \,. \tag{3}$$

(c) Prove that $\hat{f'}(k) = ik\hat{f}(k)$ for all $k \in \mathbb{R}$.

Exercise 3. [10 points] Let $n \in \mathbb{N}$ and $f \in L^1(\mathbb{R})$. Find conditions that imply the respective statements.

- (a) $\hat{f} \in C^n(\mathbb{R})$.
- (b) $\sup_{k \in \mathbb{R}} ||k|^n \hat{f}(k)| < \infty$.
- (c) $\hat{f} \in L^1(\mathbb{R})$.

Exercise 4. [10 points] Let $a, b \in \mathbb{C}$ with $\operatorname{Re} a > 0$ and let $f : \mathbb{R} \to \mathbb{C}$ defined as $f(x) = e^{-ax^2/2+bx}$. Show that $f \in \mathcal{S}(\mathbb{R})$ and compute $\hat{f}(k)$.