Mathematical Quantum Theory Exercise sheet 10 01.02.2019 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [14 points] Consider the self-adjoint operators A, B on $L^2([-1,1])$ where A is the multiplication by x and B is the multiplication by x^2 . Prove that:

(i) $f: [-1,1] \to \mathbb{R}, f(x) = 1$ is a cyclic vector of A, that is:

$$L^{2}([-1,1]) = \overline{\operatorname{span}\{A^{n}f \mid n \in \mathbb{N}\}}$$

- (ii) The characteristic function $\chi_{[0,1]}$ is not a cyclic vector of A.
- (iii) The operator B has no cyclic vectors. [Hint. Suppose there exists a cyclic vector f. Find a function g that is orthogonal to $B^n f$ for all n.]

Exercise 2. [13 points]

- (i) Let A be a densely defined, symmetric operator on \mathcal{H} such that D(A) contains an orthonormal basis of \mathcal{H} consisting of eigenvectors of A. Prove that A is essentially selfadjoint.
- (ii) Let $\mathcal{H} = L^2([0, 1])$, and consider the densely defined operator A_N given by:

$$D(A_N) = \{ \psi \in C^2([0,1]) \mid \psi'(0) = 0 = \psi'(1) \}$$

$$A_N \psi = -\psi'',$$
 (Neumann Laplacian)

Prove that A_N is symmetric, and essentially selfadjoint. [Hint. Recall that $\{\sin(n\pi x)\}$ is a basis for $L^2([0,1])$].

Exercise 3. [13 points] Let $T : L^2([0,1]) \to L^2([0,1])$ be given by:

$$(Vf)(x) := \int_0^x f(y) dy \; .$$

Prove the following:

- (i) $T \in \mathcal{L}(L^2([0,1])).$
- (ii) T is compact.

[Hint. Recall that operators of the form $(Kf)(x) = \int_{\Omega} dy \, k(x, y) f(y)$ with $k(x, y) \in L^2(\Omega \times \Omega)$ are compact] (iii) $\sigma_{\rm p}(T) = \emptyset$.

- (iv) $\sigma_{\mathbf{r}}(T) = \emptyset$.
- (v) $\sigma(T) = \{0\}.$
- (vi) $T + T^*$ is an orthogonal projection with dim $\operatorname{Ran}(T + T^*) = 1$.