Mathematical Quantum Theory Exercise sheet 2 02.11.2018 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points] Let $1 \le p < \infty$, and let $A = (0, 1) \subset \mathbb{R}$. Moreover, let $I = (a, b) \subset A$. For each $\varepsilon > 0$, find a function $g_{\varepsilon} \in C_{c}(A)$ such that $g_{\varepsilon} \to \mathbb{1}_{I}$ in $L^{p}(\Omega)$, with:

$$\mathbb{1}_{I}(x) = \begin{cases} 1 & x \in I \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 2. [10 points] Let \mathcal{H} be a Hilbert space, and let $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$ be a sequence. We say that x_n converges weakly to $x \in \mathcal{H}$, $x_n \stackrel{n \to \infty}{\longrightarrow} x$, if and only if, for all $y \in \mathcal{H}$, $\langle y, x_n - x \rangle \to 0$ as $n \to \infty$. Prove that the following statements are equivalent.

(a) x_n converges to x in norm, that is $||x_n - x||_{\mathcal{H}} \to 0$ as $n \to \infty$.

(b) $x_n \stackrel{n \to \infty}{\rightharpoonup} x$ and $\lim_{n \to \infty} ||x_n|| = ||x||$.

Hint. Recall the reverse triangle inequality:

$$|||y|| - ||x||| \le ||y - x||$$
.

Exercise 3. [20 points] Let $\eta \in C_c^{\infty}(\mathbb{R}^d)$ such that:

- (i) $\eta \ge 0$ and $\eta = 0$ if $|x| \ge 1$.
- (ii) $\int_{\mathbb{R}^d} dx \, \eta(x) = 1.$

For all $\varepsilon > 0$, let $\eta_{\varepsilon}(x) := \varepsilon^{-d} \eta(x/\varepsilon)$. The function η_{ε} is called a *mollifier*. We define the *mollification* of f the function:

$$(\eta_{\varepsilon} * f)(x) := \int_{\mathbb{R}^d} \eta_{\varepsilon}(x-y) f(y) \, dy \; .$$

(a) Let $f \in L^p(\mathbb{R}^d)$, $1 \le p < \infty$. Prove that $\|\eta_{\varepsilon} * f\|_{L^p} \le \|f\|_{L^p}$. Hint. Use Hölder inequality. Split $\eta = \eta^{1/p} \eta^{1/p'}$ with $\frac{1}{p} + \frac{1}{p'} = 1$.

- (b) Let $\Omega \subseteq \mathbb{R}^d$ open, and let $f \in L^p(\Omega)$. Define f to be zero outside Ω . Show that $\eta_{\varepsilon} * f \in C^{\infty}(\mathbb{R}^d)$. *Hint. Recall dominated convergence.*
- (c) Let $\Omega' \subset \Omega$, Ω , Ω' open. Let $f \in C_c(\Omega')$ and zero outside Ω' . Show that $\eta_{\varepsilon} * f \in C_c(\Omega)$, provided $\varepsilon > 0$ is small enough.
- (d) Let $f \in C_{c}(\Omega)$ and zero outside Ω . Prove that $\eta_{\varepsilon} * f$ converges uniformly to f as $\varepsilon \to 0$. Conclude that $\eta_{\varepsilon} * f \to f$ in $L^{p}(\Omega)$ as $\varepsilon \to 0$.
- (e) Let $f \in L^p(\Omega)$, Show that for every $\delta > 0$ there exists $g \in C_c^{\infty}(\Omega)$ such that $||f g||_{L^p(\Omega)} \le \delta$. *Hint. Use that* $C_c(\Omega)$ *is dense* $L^p(\Omega)$ *for* $1 \le p < \infty$.
- (f) Let $f \in L^p(\Omega)$. Prove that if f is continued with zero outside Ω , then $\|\eta_{\varepsilon} * f f\|_{L^p(\Omega)} \to 0$ as $\varepsilon \to 0$.