Mathematical Quantum Theory
Exercise sheet 4
16.11.2018
Emanuela Giacomelli
emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points] i) Consider the following linear operator, from $L^{2}([0, \infty))$ to $L^{2}([0, \infty))$:

$$
\begin{equation*}
(L \psi)(t)=\psi(2 t) . \tag{1}
\end{equation*}
$$

Check that L is continuous and compute the norm.
ii) Let B_{1} be the unitary circle in $\mathbb{R}^{2},\left\{x \in \mathbb{R}^{2}| | x \mid \leq 1\right\}$. Consider the following linear operator from $L^{2}\left(B_{1}\right)$ to $L^{2}\left(B_{1}\right)$:

$$
\begin{equation*}
(L \psi)(x, y)=\psi(y,-x) \tag{2}
\end{equation*}
$$

Check that L is continuous and compute the norm.

Exercise 2. [10 points] Let $\left(c_{k}\right)$ be a sequence in \mathbb{C} such that $\left|c_{k}\right| \leq C k^{p}$ for some $p \in \mathbb{R}_{+}$. Prove that the series:

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} \sin k x \tag{3}
\end{equation*}
$$

converges in $S^{\prime}\left(\mathbb{R}^{d}\right)$.
[That is, show that the sum converges if evaluated against any test function $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.]

Exercise 3. [10 points] Let $a(x) \in C_{\text {pol }}^{\infty}(\mathbb{R})$. Solve the following differential equation in $\mathcal{S}^{\prime}(\mathbb{R})$:

$$
\begin{equation*}
\frac{d}{d x} T+a(x) T=\frac{d}{d x} \delta \tag{4}
\end{equation*}
$$

Exercise 4. [10 points] i) Prove that $L^{p}\left(\mathbb{R}^{d}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ for all $1 \leq p \leq \infty$.
[Functions in L^{p} are associated to distributions via the identification $f \rightarrow T_{f}$, for $f \in L^{p}$.]
ii) Prove that $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{p}=0\left(u_{k}\right.$ converges to u in $\left.L^{p}\right)$ implies that $T_{u_{k}} \stackrel{*}{\rightharpoonup} T_{u}$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

