Mathematical Quantum Theory
Exercise sheet 5
30.11.2018
Emanuela Giacomelli
emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points] Let $H \in \mathcal{L}(\mathcal{H}), H=H^{*}$. Prove that:

$$
\begin{equation*}
U(t):=e^{-i H t}=\sum_{n=0}^{\infty} \frac{(-i H t)^{n}}{n!} \tag{1}
\end{equation*}
$$

is a strongly continuous one-parameter group of unitary operators, with generator H. Moreover, prove that $U(t)$ is norm differentiable.

Exercise 2. [10 points] Let $\mathcal{D}^{\prime}(\mathbb{R})$ be the dual space of $C_{c}^{\infty}(\mathbb{R})$ (space of distributions). Let $\left\{x_{k}\right\} \subset \mathbb{R}$, such that $x_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Prove that:

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} \delta\left(\cdot-x_{k}\right) \tag{2}
\end{equation*}
$$

converges in $\mathcal{D}^{\prime}(\mathbb{R})$, for any sequence $\left\{c_{k}\right\} \subset \mathbb{R}$.

Exercise 3. [10 points] Let $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $|x| \psi(x) \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\psi \in H^{1}\left(\mathbb{R}^{d}\right)$. Let:

$$
\begin{align*}
& X:=\langle\psi, x \psi\rangle, \quad \Delta X^{2}:=\langle(x-X) \psi,(x-X) \psi\rangle \\
& P:=\langle\psi,-i \nabla \psi\rangle, \quad \Delta P^{2}:=\langle(-i \nabla-P) \psi,(-i \nabla-P) \psi\rangle . \tag{3}
\end{align*}
$$

(Notice that $x=\left(x_{1}, \ldots, x_{d}\right)$. We are using the notation: $\langle x \psi, x \psi\rangle=\sum_{j=1}^{d}\left\langle x_{j} \psi, x_{j} \psi\right\rangle$. Same for $-i \nabla$.) Prove that:

$$
\begin{equation*}
\Delta X^{2} \Delta P^{2} \geq \frac{d^{2}}{4} \quad[\text { Uncertainty principle] } \tag{4}
\end{equation*}
$$

[Hint. Use that, by Cauchy-Schwarz inequality:

$$
\begin{align*}
\Delta X^{2} \Delta P^{2} & =\langle(x-X) \psi,(x-X) \psi\rangle\langle(-i \nabla-P) \psi,(-i \nabla-P) \psi\rangle \\
& \geq|\langle\psi,(-i \nabla-P)(x-X) \psi\rangle|^{2} \tag{5}
\end{align*}
$$

Then, using $A B=\frac{1}{2}\{A, B\}+\frac{1}{2}[A, B]$ with $\{A, B\}=A B+B A$ and $[A, B]=A B-B A$, argue that, for the purpose of a lower bound, in Eq. (5) it is enough to replace $(-i \nabla-P)(x-X)$ by $[(-i \nabla-P),(x-X)]$. Compute the commutator.]

Exercise 4. [10 points] Let $\mathcal{H}=L^{2}([0,1])$. For $\psi \in \mathcal{H}$, consider:

$$
\begin{equation*}
T(\psi):=\int_{0}^{1 / 2} d x \psi(x) \tag{6}
\end{equation*}
$$

Prove that $T \in \mathcal{H}^{\prime}$. Recall the definition of norm of T :

$$
\begin{equation*}
\|T\|:=\sup _{\psi \in \mathcal{H}} \frac{|T(\psi)|}{\|\psi\|_{\mathcal{H}}} \tag{7}
\end{equation*}
$$

Compute $\|T\|$ using Riesz theorem.

