Mathematical Quantum Theory Exercise sheet 6 06.12.2018 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [14 points] Let \mathcal{H}_1 , \mathcal{H}_2 be Hilbert spaces, and let $U : \mathcal{H}_1 \to \mathcal{H}_2$ unitary. Suppose that (H, D(H)) is a selfadjoint operator on \mathcal{H}_1 , $D(H) \subset \mathcal{H}_1$, $H : D(H) \to \mathcal{H}_2$. Prove that:

$$(UHU^*, UD(H))$$
 is selfadjoint on \mathcal{H}_2 . (1)

Exercise 2. [14 points] Let $M \subset \mathcal{H}$. Prove that:

$$\overline{M}^{\perp} = M^{\perp} , \qquad M^{\perp \perp} = \overline{M} . \tag{2}$$

Exercise 3. [12 points] Prove that $(-\Delta, H^2(\mathbb{R}^d))$ is selfadjoint on $L^2(\mathbb{R}^d)$.

[Hint. Use Exercise 1, together with the fact that the multiplication operator A_f , $(A_f\psi) = f(x)\psi(x)$, for $f : \mathbb{R}^d \to \mathbb{C}$ is selfadjoint if and only if f is real valued.]

Exercise 4. [10 points, bonus] Let $\Omega \subseteq \mathbb{R}^d$ open, and $f \in C(\Omega)$. Suppose that for every $\varphi \in C_c^{\infty}(\Omega)$ we have:

$$\int_{\Omega} dx f(x)\varphi(x) = 0.$$
(3)

Prove that f = 0.