Mathematical Quantum Theory Exercise sheet 7 13.12.2018 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points] Let $L^2(\mathbb{T})$ and $H^1(\mathbb{T})$ be the Hilbert spaces of periodic square integrable functions and functions with square integrable weak derivatives, respectively, with the inner products

$$\langle f,g\rangle_{L^2} = \int_{\mathbb{T}} \overline{f}g \, dx, \quad \langle f,g\rangle_{H^1} = \int_{\mathbb{T}} (\overline{f}g + \overline{f'}g') \, dx$$

Let $D: H^1(\mathbb{T}) \to L^2(\mathbb{T})$ be the derivative operator D = d/dx. Prove that

$$D^* = D(D^2 - 1)^{-1}$$

Exercise 2. [10 points]

1) Let $T: D(T) \to \mathcal{H}$ a liner operator. Show that T is closed if and only if D(T) is complete with respect to the norm $\|\cdot\|_{\Gamma(T)}$ such that

 $||x||_{\Gamma(T)} := ||x||_{\mathcal{H}} + ||Tx||_{\mathcal{H}} \qquad (\text{graph norm})$

2) Show that every operator $T \in \mathcal{L}(\mathcal{H})$ is closable and that every finite-rank closable operator is bounded

Exercise 3. [10 points]

- 1) Consider $(-\Delta, H^2(\mathbb{R}))$, prove that $-\Delta$ is an unbounded operator on $L^2(\mathbb{R})$.
- 2) Consider $H := -\Delta + V(x)$ with $V \in C(\mathbb{R})$ and $V(x) \ge 0$, prove that $(H, C_c^{\infty}(\mathbb{R}))$ is a positive operator.

Exercise 4. [10 points] Let \mathcal{H} be a Hilbert space with the norm $\|\cdot\|$ and let $|\cdot|$ be another norm on \mathcal{H} such that

$$||x|| \le C|x| \quad \forall x \in \mathcal{H}, \ C > 0.$$

Let $T: \mathcal{H} \to \mathcal{H}$ be a symmetric operator such that

$$|Tx| \le k|x|, \quad \forall x \in H,$$

for some k > 0. Prove that

$$\|Tx\| \leq k\|x\|, \quad \forall x \in H$$