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Exercise 1. [15 points] Consider the discrete Laplacian —A : (?(Z) — (%(Z), given by:
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(i) Show that —A is bounded and selfadjoint.
(ii) Show that 0 < —A < 41.
(iii) Compute || — A||.
)

(iv) Determine o(—A) using the Weyl criterion. [Hint. Use that —Af = Mf for f = €™ and for some explicit

A= Aa).]

Exercise 2. [10 points] Let T be selfadjoint. Prove that, as e — 07:
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((T — X —ie) Tt — (T — X\ +ie) 1>d)\ -3 [X[a,b] (T) + X(ap)(T)] strongly,

Exercise 3. [15 points] Let H be a bounded selfadjoint operator. Prove that

(i) The operator U(t) = et defined via the functional calculus is unitary for all ¢t € R and:

Ut =U(-t), U@BU(s)=Ut+s), VtseR.

(ii) The operator-valued function ¢t — U (¢) defined in () via the functional calculus is differentiable with respect to
the operator norm topology, and U’(t) = iHU(t) for all t € R.

(iii) For A\ ¢ o(H), we have:

|(H —X\)7Y| = dist(A\, o (H)) ™t .



