Introduction to Partial Differential Equations
 Exercise sheet 1
 5.11.2018
 Emanuela Giacomelli
 emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

Write down an explicit formula for a function $u: \mathbb{R}^{n} \times[0, \infty)$ solving the initial value problem

$$
\begin{cases}u_{t}+b \cdot D u+t u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $b \in \mathbb{R}^{n}$ is a constant.

Exercise 2. [10 points]

Let $U \subset \mathbb{R}^{n}$ be an open set.

1. Given a subharmonic function $v \in C^{2}(\bar{U})$, i.e. such that

$$
-\Delta v \leq 0 \quad \text { in } U
$$

prove that

$$
v(x) \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} d y v(y) \quad \text { for all } B(x, r) \subset U
$$

Prove also that if $v \in C^{2}(\bar{U})$ is subharmonic, then $\max _{\bar{U}} \tilde{v}=\max _{\partial U} \tilde{v}$.
2. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v:=\phi(u)$. Prove that v is subharmonic.
3. Prove $v:=|D u|^{2}$ is subharmonic, whenever u is harmonic.
4. Let u be harmonic in \mathbb{R}^{n}. Suppose that $\int_{\mathbb{R}^{n}} d x u(x)^{2} \leq M<\infty$. Show that $u(x) \equiv 0$.

Remark 1 It easily follows that if $v \in C^{2}(\bar{U})$ is superharmonic, i.e. $-\Delta v \geq 0$, then

$$
v(x) \geq \frac{1}{|B(x, r)|} \int_{B(x, r)} d y v(y) \quad \text { for all } B(x, r) \subset U
$$

and that $\min _{\bar{U}} \tilde{v}=\min _{\partial U} \tilde{v}$.

Exercise 3. [10 points]

Find the Green's function for the domain:

$$
B_{r}^{+}:=\left\{x \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}<r, x_{2}>0\right\} .
$$

