Introduction to Partial Differential Equations Exercise sheet 2 12.11.2018 Emanuela Giacomelli emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

1. Let u be harmonic in \mathbb{R}^n . Suppose that

$$\int_{\mathbb{R}^n} dx \, |\partial_{x_i} u(x)|^p \le M < +\infty,$$

with p > 1. Prove that u is constant in x_i . [Hint: Recall Hölder inequality].

2. Let $U \subset \mathbb{R}^n$ be an open, bounded and connected subset of \mathbb{R}^n , let u be harmonic in U. Suppose $u \ge 0$ in U and suppose that there exists a point $x_* \in U$ such that $u(x_*) > 0$. Prove that u(x) > 0 for all $x \in U$.

Exercise 2. [10 points]

Let $U \subset \mathbb{R}^n$ be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending on U such that

$$\max_{\overline{U}} |u| \le C \big(\max_{\partial U} |g| + \max_{\overline{U}} |f| \big),$$

whenever u is a solution of

$$\begin{cases} -\Delta u = f & inU\\ u = g & onU \end{cases}$$

[*Hint: use that the function* $u + \frac{|x|^2}{2n}\lambda$ *, with* $\lambda := \max_{\overline{U}} |f|$ *, is subharmonic*].

Exercise 3. [10 points]

1. Use Poisson's formula for the ball $B(0,r) \subset \mathbb{R}^n$ to prove

$$r^{n-2}\frac{r-|x|}{(r+|x|)^{n-1}}u(0) \le u(x) \le r^{n-2}\frac{r+|x|}{(r-|x|)^{n-1}}u(0),$$

whenever u is poitive and harmonic in $B^0(0, r) := \{x \in \mathbb{R}^n \text{ s.t. } |x| < r\}$. This is an explicit form of Harnack's inequality.

2. Let u be the solution of

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n_+ \\ u = g & \text{on } \partial \mathbb{R}^n_+ \end{cases}$$

with $g \in C(\mathbb{R}^{n-1}) \cap L^{\infty}(\mathbb{R}^{n-1})$, then u is given by the Poisson's formula. Assume g(x) := |x| for $x \in \partial \mathbb{R}^n_+$, if $|x| \leq 1$. Show that Du is not bounded near x = 0. [*Hint: estimate* $\frac{u(\lambda e_n) - u(0)}{\lambda}$].