Introduction to Partial Differential Equations
 Exercise sheet 4
 03.12.2018
 Emanuela Giacomelli
 emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

Let $U \subset \mathbb{R}^{n}$ open and bounded, let $U_{T}:=U \times(0, T]$ where $T>0$ is fixed. We say that $v \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ is a subsolution of the heat equation if

$$
v_{t}-\Delta v \leq 0 \quad \text { in } U_{T}
$$

1) Prove for a subsolution v that

$$
v(x, t) \leq \frac{1}{4 r^{n}} \iint_{E(x, t ; r)} v(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

for all $E(x, t ; r) \subset U_{T}$, where for every fixed $x \in \mathbb{R}^{n}, t \in \mathbb{R}$ and $r>0$, we define

$$
E(x, t ; r):=\left\{(y, s) \in \mathbb{R}^{n+1} \mid s \leq t, \Phi(x-y, t-s) \geq \frac{1}{r^{n}}\right\}
$$

2) Prove that

$$
\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u
$$

where $\Gamma_{T}:=\bar{U}_{T}-U_{T}$

Exercise 2. [10 points]

1) Let $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume that u solves the heat equation and let $v:=\Phi(u)$. Prove that v is a subsolution.
2) Let $v:=\left|D_{x} u\right|^{2}+u_{t}^{2}$, with u a smooth solution of the heat equation. Prove that v is a subsolution.

Exercise 3. [10 points]

Given $g:[0, \infty) \rightarrow \mathbb{R}$, with $g(0)=0$, derive the formula

$$
u(x, t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3 / 2}} e^{-\frac{x^{2}}{4(t-s)}} g(s) d s
$$

for a solution of the initial/boundary-value problem

$$
\begin{cases}u_{t}-u_{x x}=0 & \text { in } \mathbb{R}_{+} \times(0, \infty) \\ u(x, 0)=0 & \text { for } x \in \mathbb{R}_{+} \\ u(0, t)=g(t) & \text { for } t \in[0, \infty)\end{cases}
$$

[Hint: define $v(x, t):=u(x, t)-g(t)$ and extend v to $\{x<0\}$ by odd reflection.]

