Introduction to Partial Differential Equations
 Exercise sheet 5
 10.12.2018
 Emanuela Giacomelli
 emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

1) Show that the general solution of the equation $u_{x y}=0$ is of the form:

$$
u(x, y)=F(x)+G(y)
$$

for arbitrary F, G.
2) Using the change of variables $\xi:=x+t$ and $\eta:=x-t$,show that $u_{t t}-u_{x x}=0$ if and only if $u_{\xi \eta}=0$.
3) Use Part 1 and Part 2 to rederive d'Alembert's formula.
4) Find under what conditions on the initial datum $u=g$ and $u_{t}=h$ on $\mathbb{R} \times\{t=0\}$, the solution $u(x, t)$ is a right-moving wave, resp. a left-moving wave.

Exercise 2. [10 points]

Find a solution of the following Cauchy problem:

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R} \\ u_{t}(x, 0)=h(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

with initial datum:

$$
g(x)=0, \quad h(x):= \begin{cases}1 & \text { if }|x|<a \\ 0 & \text { if }|x|>a\end{cases}
$$

Exercise 3. [10 points]

Let $f \in C(\mathbb{R})$, and consider the following boundary value problem:

$$
\begin{cases}u_{t t}-u_{x x}=f(x) \sin t & \text { for }(x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=u_{t}(x, 0=0 & \text { for all } x \in \mathbb{R}\end{cases}
$$

Find a particular solution of the problem, and prove uniqueness.

