Introduction to Partial Differential Equations
Exercise sheet 6, 17.12.2018
Emanuela Giacomelli
emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

1) Let $U \subset \mathbb{R}^{n}$ bounded, with ∂U of class C^{1}. Consider the initial value/boundary problem:

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } U \times(0, \infty), \\ u(x, 0)=g(x), u_{t}(x, 0)=h(x) & \text { for } x \in U, \\ \nu \cdot D u+a(x) u_{t}=0 & \text { on } \partial U .\end{cases}
$$

with $\nu \equiv \nu(x)$ the outward normal at $x \in \partial U$. Suppose that $a(x) \geq 0$. Define the energy functional for the problem, and prove uniqueness of the solution.
2) Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Consider the initial- boundary value problem

$$
\begin{cases}u_{t t}+a^{2}(x, t) u_{t}-\Delta u=0 & \text { in } \Omega \times(0, \infty), \\ u(x, t)=0, & \text { on } \partial \Omega, 0<t<+\infty, \\ u(x, 0)=f(x), u_{t}(x, 0)=g(x) & \text { for } x \in \Omega .\end{cases}
$$

where $a(x, t), f(x), g(x)$ are smooth functions. Let

$$
E(t):=\int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) \mathrm{d} x .
$$

Prove that $E(t)$ is a decreasing function of t and prove that the $L^{2}-$ norm of the solution is bounded, i.e., $\|u(\cdot, t)\|_{L^{2}(\Omega)}<\infty$.

Exercise 2. [10 points]

Let $U \subset \mathbb{R}^{n}$ be open and bounded. Consider the initial value/boundary problem

$$
\begin{cases}\varepsilon^{2} u_{t t}+u_{t}=\Delta u & \text { in } U \times(0, \infty) \tag{1}\\ u(x, t)=0 & \text { on } \partial \Omega \times(0, \infty)\end{cases}
$$

1) Show that the energy functional

$$
E(t):=\int_{U} \varepsilon^{2} u_{t}^{2}+|\nabla u|^{2} d x
$$

is nonincreasing on solution of the problem (1).
2) Consider now the solution $u \equiv u^{\varepsilon}$ of (1) with intial datum $u^{\varepsilon}(x, 0)=0, u_{t}^{\varepsilon}(x, 0)=\varepsilon^{-\alpha} f(x)$, with f independent on f and $\alpha<1$. Prove that

$$
\int_{U}\left|\nabla u^{\varepsilon}(x, t)\right|^{2} \mathrm{~d} x \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 .
$$

Exercise 3. [10 points]

Consider the nonhomogeneous Burgers' equation:

$$
\begin{cases}\partial_{t} u+u \partial_{x} u=-x & \text { for }(x, t) \in \mathbb{R} \times(0, \infty), \\ u(x, 0)=f(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Find the solution using the method of characteristic (that is, find an implicit expression for u, such that for small times gives the unique solution).

