Introduction to Partial Differential Equations
 Exercise sheet 8
 28.01.2019
 Emanuela Giacomelli
 emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

1) Consider the initial value problem:

$$
\begin{cases}u_{t}+\partial_{x} \frac{u^{2}}{2}=0 & x \in \mathbb{R}, t>0 \tag{1}\\ u(x, 0)=g(x) & x \in \mathbb{R}\end{cases}
$$

with $g(x)$ given by

$$
g(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the solution using the method of the characteristics. Find the expression for the shock curve.
2) Consider the PDE in Eq. (1), this time with initial datum

$$
g(x)= \begin{cases}1+x & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

Find the solution using the method of the characteristics. Find the expression for the shock curve.

Exercise 2. [10 points]

Consider the initial value problem:

$$
\begin{cases}u_{t}+u^{3} u_{x}=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=g(x) & x \in \mathbb{R}\end{cases}
$$

with, for $a>0, g(x)$ given by

$$
g(x)= \begin{cases}a\left(1-e^{x}\right) & \text { if } x<0 \\ -a\left(1-e^{x}\right) & \text { if } x>0\end{cases}
$$

Find the smallest time for which a shock appears.

Exercise 3. [10 points]

Consider the initial value problem:

$$
\begin{cases}u_{t}+(1-2 u) u_{x}=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=g(x) & x \in \mathbb{R}\end{cases}
$$

with, for $0<a<1$,

$$
g(x)= \begin{cases}a & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

Determine the characteristics and find a solution. Are there shock lines?

