Introduction to Partial Differential Equations
 Exercise sheet 3
 26.11.2018
 Emanuela Giacomelli
 emanuela-laura.giacomelli@uni-tuebingen.de

Exercise 1. [10 points]

1. Let $B_{1}^{+} \subset \mathbb{R}^{2}$ denote the upper half-disc, $B_{1}^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1, y>0\right\}$. Take $u \in C^{2}\left(B_{1}^{+}\right) \cap c\left(\overline{B_{1}^{+}}\right)$ harmomic on B_{1}^{+}with $u(x, 0)=0$. Prove that the continuous function

$$
U(x)= \begin{cases}u(x, y) & \text { if } y \geq 0 \\ -u(x,-y) & \text { if } y<0\end{cases}
$$

obtained through an odd reflection of u with respect to the x-th axis, is harmonic on the entire disc $B_{1}=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$.
2. Solve the following problem

$$
\begin{cases}\Delta u(x, y)=0 & \text { in } B_{1}^{+} \\ u=g & \text { on } \partial B_{1}^{+}\end{cases}
$$

with g continuous on ∂B_{1}.

Exercise 1. [10 points]

Write down an explicit formula for a solution of

$$
\begin{cases}u_{t}-\Delta u+c u= & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $c \in \mathbb{R}$.

Exercise 3. [10 points]

Write down an explicit formula for a solution $u(x, t)$ of

$$
\begin{cases}u_{t}-u_{x x}=0 & \text { if } 0<x<L, t>0 \\ u(x, 0)=g(x) & \text { if } 0 \leq x \leq L \\ u_{x}(0, t)=u_{x}(L, t)=0 & \text { if } t>0\end{cases}
$$

where g is a continuous function in $[0, L]$.
[Hint: find the solution by reflection, as in the case of the half-line- To do so, define the even reflection of g :

$$
\tilde{g}(x):= \begin{cases}g(x) & \text { if } 0 \leq x \leq L \\ g(-x) & \text { if }-L \leq x<0\end{cases}
$$

Then, extend \tilde{g} to the whole \mathbb{R} by setting it to zero outside the interval $[-L, L]$. Finally, define:

$$
g^{\star}(x)=\sum_{n=-\infty}^{+\infty} \tilde{g}(x-2 n L)
$$

Notice that for every fixed $x \in \mathbb{R}$, there is only one non vanishing term in the sum.]

